BE_2025v15n5

Bioscience Evidence 2025, Vol.15, No.5, 209-218 http://bioscipublisher.com/index.php/be 217 Boudali S., Al-Jumaili A., Bouandas A., Mahammi F., Aoul N., Hanotte O., and Gaouar S., 2020, Maternal origin and genetic diversity of Algerian domestic chicken (Gallus gallus domesticus) from North-Western Africa based on mitochondrial DNA analysis, Animal Biotechnology, 33: 457-467. https://doi.org/10.1080/10495398.2020.1803892 Flink L., Allen R., Barnett R., Malmström H., Peters J., Eriksson J., Andersson L., Dobney K., and Larson G., 2014, Establishing the validity of domestication genes using DNA from ancient chickens, Proceedings of the National Academy of Sciences, 111: 6184-6189. https://doi.org/10.1073/pnas.1308939110 Hata A., Nunome M., Suwanasopee T., Duengkae P., Chaiwatana S., Chamchumroon W., Suzuki T., Koonawootrittriron S., Matsuda Y., and Srikulnath K., 2021, Origin and evolutionary history of domestic chickens inferred from a large population study of Thai red junglefowl and indigenous chickens, Scientific Reports, 11: 2035. https://doi.org/10.1038/s41598-021-81589-7 Hou Y., Qi F., Bai X., Ren T., Shen X., Chu Q., Zhang X., and Lu X., 2020, Genome-wide analysis reveals molecular convergence underlying domestication in 7 bird and mammals, BMC Genomics, 21: 204. https://doi.org/10.1186/s12864-020-6613-1 Huang X., Li G., Chen X., Wu Y., Li W., Zhong F., Wang W., and Ding Z., 2017, Identification of a novel mtDNA lineage B3 in chicken (Gallus gallus domesticus), Zoological Research, 38: 208-210. https://doi.org/10.24272/j.issn.2095-8137.2017.039 Huang Z., Xu Z., Bai H., Huang Y., Kang N., Ding X., Liu J., Luo H., Yang C., Chen W., Guo Q., Xue L., Zhang X., Xu L., Chen M., Fu H., Chen Y., Yue Z., Fukagawa T., Liu S., Chang G., and Xu L., 2023, Evolutionary analysis of a complete chicken genome, Proceedings of the National Academy of Sciences of the United States of America, 120(8): e2216641120. https://doi.org/10.1073/pnas.2216641120 Kanakachari M., Chatterjee R., Reddy M., Dange M., Bhattacharya T., Giovambattista G., and Kataria R., 2023, Indian Red Jungle fowl reveals a genetic relationship with South East Asian Red Jungle fowl and Indian native chicken breeds as evidenced through whole mitochondrial genome sequences, Frontiers in Genetics, 14: 1083976. https://doi.org/10.3389/fgene.2023.1083976 Larkina T., Barkova O., Peglivanyan G., Mitrofanova O., Dementieva N., Stanishevskaya O., Vakhrameev A., Makarova A., Shcherbakov Y., Pozovnikova M., Brazhnik E., Griffin D., and Romanov M., 2021, Evolutionary subdivision of domestic chickens: implications for local breeds as assessed by phenotype and genotype in comparison to commercial and fancy breeds, Agriculture, 11(10): 914. https://doi.org/10.3390/agriculture11100914 Lawal R., and Hanotte O., 2021, Domestic chicken diversity: Origin, distribution, and adaptation, Animal Genetics, 52(4): 385-394. https://doi.org/10.1111/age.13091 Lawal R., Martin S., Vanmechelen K., Vereijken A., Silva P., Al-Atiyat R., Aljumaah R., Mwacharo J., Wu D., Zhang Y., Hocking P., Smith J., Wragg D., and Hanotte O., 2019, The wild species genome ancestry of domestic chickens, BMC Biology, 18: 13. https://doi.org/10.1186/s12915-020-0738-1 Li D., Che T., Chen B., Tian S., Zhou X., Zhang G., Li M., Gaur U., Li Y., Luo M., Zhang L., Xu Z., Zhao X., Yin H., Wang Y., Jin L., Tang Q., Xu H., Yang M., Zhou R., Li R., Zhu Q., and Li M., 2017, Genomic data for 78 chickens from 14 populations, GigaScience, 6: 1-5. https://doi.org/10.1093/gigascience/gix026 Li D., Li Y., Li M., Che T., Tian S., Chen B., Zhou X., Zhang G., Gaur U., Luo M., Tian K., He M., He S., Xu Z., Jin L., Tang Q., Dai Y., Xu H., Hu Y., Zhao X., Yin H., Wang Y., Zhou R., Yang C., Du H., Jiang X., Zhu Q., and Li M., 2019, Population genomics identifies patterns of genetic diversity and selection in chicken, BMC Genomics, 20: 263. https://doi.org/10.1186/s12864-019-5622-4 Liu L., Ren M., Yang Y., and Chen Z., 2020, Characterization and phylogenetic analysis of the complete mitochondrial genome in Xiaoxiang chicken (Gallus gallus domesticus), Mitochondrial DNA. Part B, Resources, 5: 699-700. https://doi.org/10.1080/23802359.2020.1715282 Liu Y., Wu G., Yao Y., Miao Y., Luikart G., Baig M., Beja-Pereira A., Ding Z., Palanichamy M., and Zhang Y., 2006, Multiple maternal origins of chickens: out of the Asian jungles, Molecular Phylogenetics and Evolution, 38(1): 12-19. https://doi.org/10.1016/J.YMPEV.2005.09.014 Lorenzo P., Ceccobelli S., Panella F., Attard G., and Lasagna E., 2015, The role of mitochondrial DNA to determine the origin of domestic chicken, World's Poultry Science Journal, 71: 311-318. https://doi.org/10.1017/S0043933915000318 Mehlhorn J., and Caspers S., 2021, The effects of domestication on the brain and behavior of the chicken in the light of evolution, Brain, Behavior and Evolution, 95: 287-301. https://doi.org/10.1159/000516787 Meijer H., Walker S., Sutikna T., Saptomo E., and Tocheri M., 2022, Why did the chicken cross the Wallace Line? Archaeological evidence suggests human‐mediated dispersal of Gallus to Flores first occurred at least ~2.25 ka cal. BP, International Journal of Osteoarchaeology, 33(4): 631-641. https://doi.org/10.1002/oa.3192 Núñez-León D., Cordero G., Schlindwein X., Jensen P., Stoeckli E., Sánchez-Villagra M., and Werneburg I., 2021, Shifts in growth, but not differentiation, foreshadow the formation of exaggerated forms under chicken domestication, Proceedings of the Royal Society B, 288: 20210392. https://doi.org/10.1098/rspb.2021.0392

RkJQdWJsaXNoZXIy MjQ4ODYzNA==