Bioscience Evidence 2024, Vol.14, No.6, 260-269 http://bioscipublisher.com/index.php/be 269 Xavier A., Jarquín D., Howard R., Ramasubramanian V., Specht J., Graef G., Beavis W., Diers B., Song Q., Cregan P., Nelson R., Nelson R., Mian R., Mian R., Shannon J., McHale L., Wang D., Schapaugh W., Lorenz A., Xu S., Muir W., and Rainey K., 2017, Genome-wide analysis of grain yield stability and environmental interactions in a multiparental soybean population, G3: Genes|Genomes|Genetics, 8: 519-529. https://doi.org/10.1534/g3.117.300300 Yoosefzadeh-Najafabadi M., Tulpan D., and Eskandari M., 2021, Application of machine learning and genetic optimization algorithms for modeling and optimizing soybean yield using its component traits, PLoS ONE, 16(4): e0250665. https://doi.org/10.1371/journal.pone.0250665 Yost M., Kitchen N., Sudduth K., Massey R., Sadler E., Drummond S., and Volkmann M., 2019, A long-term precision agriculture system sustains grain profitability, Precision Agriculture, 20: 1177-1198. https://doi.org/10.1007/s11119-019-09649-7 Zhang M., Hendley P., Drost D., O’Neill M., and Ustin S., 2015, Corn and soybean yield indicators using remotely sensed vegetation index, Precision Agriculture, 1475-1481. https://doi.org/10.2134/1999.PRECISIONAGPROC4.C49B
RkJQdWJsaXNoZXIy MjQ4ODYzMg==