BE_2024v14n5

Bioscience Evidence 2024, Vol.14, No.5, 206-217 http://bioscipublisher.com/index.php/be 216 Li L., Wang Z., Li Y., Wang D., Xiu Y., and Wang H., 2021, Characterization of genes encoding ω-6 desaturase PoFAD2 and PoFAD6, and ω-3 desaturase PoFAD3 for ALA accumulation in developing seeds of oil crop Paeonia ostii var. Lishizhenii, Plant Science : An International Journal of Experimental Plant Biology, 312: 111029. https://doi.org/10.1016/j.plantsci.2021.111029 Li Y., Wei H., Yang J., Du K., Li J., Zhang Y., Qiu T., Liu Z., Ren Y., Song L., and Kang X., 2020, High-quality de novo assembly of the Eucommia ulmoides haploid genome provides new insights into evolution and rubber biosynthesis, Horticulture Research, 7(1): 183. https://doi.org/10.1038/s41438-020-00406-w Pan A., Chen M., Chowdhury R., Wu J., Sun Q., Campos H., Mozaffarian D., and Hu F., 2012, α-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis, The American Journal of Clinical Nutrition, 96(6): 1262-1273. https://doi.org/10.3945/ajcn.112.044040 Sala-Vila A., Fleming J., Kris-Etherton P., and Ros E., 2022, Impact of α-linolenic acid, the vegetable ω-3 fatty acid, on cardiovascular disease and cognition, Advances in Nutrition, 13: 1584 - 1602. https://doi.org/10.1093/advances/nmac016 Sijil P., Sarada R., and Chauhan V., 2019, Enhanced accumulation of alpha-linolenic acid rich lipids in indigenous freshwater microalga Desmodesmus sp.: The effect of low-temperature on nutrient replete, UV treated and nutrient stressed cultures, Bioresource Technology, 273: 404-415. https://doi.org/10.1016/j.biortech.2018.11.028 Wang H., Li M., Yang J., Yang D., Su Y., Fan G., Zhu Y., Gao X., and Paoletti R., 2011, Estrogenic properties of six compounds derived fromEucommia ulmoides Oliv. and their differing biological activity through estrogen receptors α and β, Food Chemistry, 129(2): 408-416. https://doi.org/10.1016/j.foodchem.2011.04.092 Wang L., Zhu Y., Zhao D., 2023, An efficient CRISPR/Cas9 mutagenesis system for Eucommia ulmoides, Journal of Plant Physiology, 59(8): 1566-1574. Wang J., Song Y., Hwarari D., Liang X., Ding J., Yan M., Wu F., Wang J., and Sheng S., 2022, Fatty acid synthases and desaturases are essential for the biosynthesis of α-linolenic acid and metamorphosis in a major mulberry pest, Glyphodes pyloalis walker (Lepidoptera: Pyralidae), Pest Management Science. 78(6): 2629-2642. https://doi.org/10.1002/ps.6895 Wu J., Qiu M., Sun L., Wen J., Liang D., Zheng S., and Huang Y., 2022, α-linolenic acid and risk of heart failure: a meta-analysis, Frontiers in Cardiovascular Medicine, 8: 788452. https://doi.org/10.3389/fcvm.2021.788452 Li J., Zang C., Luo X.. Janys N.J., Luo X.L., 2016, Research progress of alpha linolenic acid, Grain and Oil, 2: 10-12. Xie N., Zhang W., Li J., Liang H., Zhou H., Duan W., Xu X., Yu S., Zhang H., and Yi D., 2011, α-Linolenic acid intake attenuates myocardial ischemia/reperfusion injury through anti-inflammatory and anti-oxidative stress effects in diabetic but not normal rats, Archives of Medical Research, 42(3): 171-181. https://doi.org/10.1016/j.arcmed.2011.04.008 Xue Y., Chen B., Win A., Fu C., Lian J., Liu X., Wang R., Zhang X., and Chai Y., 2018, Omega-3 fatty acid desaturase gene family from two ω-3 sources, Salvia hispanica and Perilla frutescens: Cloning, characterization and expression, PLoS ONE, 13(1): e0191432. https://doi.org/10.1371/journal.pone.0191432 Xue Y., Fu C., Chai C., Liao F., Chen B., Wei S., Wang R., Gao H., Fan T., and Chai Y., 2023, Engineering the staple oil crop Brassica napus enriched with α -linolenic acid using the Perilla FAD2-FAD3 fusion gene, Journal of Agricultural and Food Chemistry, 71(19): 7324-7333. https://doi.org/10.1021/acs.jafc.2c09026 Yin Y., Guo Z., Chen K., Tian T., Tan J., Chen X., Chen J., Yang B., Tang S., Peng K., Liu S., Liang Y., Zhang K., Yu L., and Li M., 2020, Ultra-high α -linolenic acid accumulating developmental defective embryo was rescued by lysophosphatidic acid acyltransferase 2, The Plant Journal : for Cell and Molecular Biology, 103(6): 2151-2167. https://doi.org/10.1111/tpj.14889 Yu S., Zhang X., Huang L., Lyu Y., Zhang Y., Yao Z., Zhang X., Yuan J., and Hu Y., 2020, Transcriptomic analysis of α-linolenic acid content and biosynthesis in Paeonia ostii fruits and seeds, BMC Genomics, 22(1): 297. https://doi.org/10.1186/s12864-021-07594-2 Yuan Q., Xie F., Huang W., Hu M., Yan Q., Chen Z., Zheng Y., and Liu L., 2021, The review of alpha-linolenic acid: Sources, metabolism, and pharmacology, Phytotherapy Research, 36: 164-188. https://doi.org/10.1002/ptr.7295 Zhang Z., Liu Y., and Che L., 2018, Characterization of a new α-linolenic acid-rich oil: Eucommia ulmoides seed oil, Journal of Food Science, 83(3): 617-623. https://doi.org/10.1111/1750-3841.14049 Zhao D. Li Y., Zhao Y.,Zhao D., Li L,LiuS.,SongL.,Dong X., Feng Y., 2015, Transcriptome data assembly and gene function annotation of female and male plants in Eucommia ulmoides, Journal of Mountain Agriculture and Biology. 34(1): 1-12. Zhao D., Zhao D., Li Y., 2009, Studies on construction of EuFPS gene plant expression vector and agrobacterium-mediated genetic transformation of Eucommia ulmoides oliv, Genomics and Applied Biology, 28(1): 27-33. Zhao J., Deng W., and Liu H., 2019, Effects of chlorogenic acid-enriched extract fromEucommia ulmoides leaf on performance, meat quality, oxidative stability, and fatty acid profile of meat in heat-stressed broilers, Poultry Science, 98(7): 3040-3049. https://doi.org/10.3382/ps/pez081

RkJQdWJsaXNoZXIy MjQ4ODYzMg==