Bioscience Evidence 2024, Vol.14, No.5, 195-205 http://bioscipublisher.com/index.php/be 204 Gao F., Wen W., Liu J., Rasheed A., Yin G., Xia X., Wu X., and He Z., 2015, Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the chinese wheat cross zhou 8425B/Chinese spring, Frontiers in Plant Science, 6: 1099. https://doi.org/10.3389/fpls.2015.01099 Guan P., Lu L., Jia L., Kabir M., Zhang J., Lan T., Zhao Y., Xin M., Hu Z., Yao Y., Ni Z., Sun Q., and Peng H., 2018, Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivumL.), Frontiers in Plant Science, 9: 529. https://doi.org/10.3389/fpls.2018.00529 Guerrero R., Muir C., Josway S., and Moyle L., 2016, Pervasive antagonistic interactions among hybrid incompatibility loci, PLoS Genetics, 13(6): e1006817. https://doi.org/10.1101/090886 Kempe K., Rubtsova M., and Gils M., 2014, Split-gene system for hybrid wheat seed production, Proceedings of the National Academy of Sciences, 111: 9097-9102. https://doi.org/10.1073/pnas.1402836111 Kulkarni A., Tripathi M., Gautam D., Koirala K., Kandel M., Regmi D., Sapkota S., and Zaidi P., 2023, Impact of adoption of heat-stress tolerant maize hybrid on yield and profitability: evidence from Terai region of Nepal. Front. Sustain. Food Syst., 7: 1101717. https://doi.org/10.3389/fsufs.2023.1101717 Li N., Miao Y., Ma J., Zhang P., Chen T., Liu Y., Che Z., Shahinnia F., and Yang D., 2023, Consensus genomic regions for grain quality traits in wheat revealed by Meta‐QTL analysis and in silico transcriptome integration, The Plant Genome, 16(2): e20336. https://doi.org/10.1002/tpg2.20336 Longin, C., and Reif J., 2014, Redesigning the exploitation of wheat genetic resources, Trends in Plant Science, 19(10): 631-636. https://doi.org/10.1016/j.tplants.2014.06.012 Ma Z.Q., and Cai R.X., 2024, The significance of wide hybridization for wheat genetic improvement, Triticeae Genomics and Genetics, 15(2): 100-110. https://doi.org/10.5376/tgg.2024.15.0010 Ma F., Xu Y., Wang R., Tong Y., Zhang A., Liu D., and An D., 2023, Identification of major QTLs for yield-related traits with improved genetic map in wheat, Frontiers in Plant Science, 14: 1138696. https://doi.org/10.3389/fpls.2023.1138696 Matsuoka Y., and Nasuda S., 2004, Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss, Theoretical and Applied Genetics, 109: 1710-1717. https://doi.org/10.1007/s00122-004-1806-6 Melonek J., Duarte J., Martin J., Beuf L., Murigneux A., Varenne P., Comadran J., Specel S., Levadoux S., Bernath-Levin K., Torney F., Pichon J., Perez P., and Small I., 2021, The genetic basis of cytoplasmic male sterility and fertility restoration in wheat, Nature Communications, 12: 1036. https://doi.org/10.1038/s41467-021-21225-0 Mondal S., Rutkoski J., Velu G., Singh P., Crespo-Herrera L., Guzmán C., Bhavani S., Lan C., He X., and Singh R., 2016, Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches, Frontiers in Plant Science, 7: 991. https://doi.org/10.3389/fpls.2016.00991 Okada A., Arndell T., Borisjuk N., Sharma N., Watson-Haigh N., Tucker E., Baumann U., Langridge P., and Whitford R., 2019, CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production, Plant Biotechnology Journal, 17: 1905-1913. https://doi.org/10.1111/pbi.13106 Padmanaban S., Zhang P., Hare R., Sutherland M., and Martin A., 2017, Pentaploid wheat hybrids: applications, characterisation, and challenges, Frontiers in Plant Science, 8: 358. https://doi.org/10.3389/fpls.2017.00358 Parisod C., and Badaeva E., 2020, Chromosome restructuring among hybridizing wild wheats, The New phytologist, 226(5):1263-1273. https://doi.org/10.1111/nph.16415 Paux E., Sourdille P., Mackay I., and Feuillet C., 2012, Sequence-based marker development in wheat: advances and applications to breeding, Biotechnology Advances, 30(5): 1071-1088. https://doi.org/10.1016/j.biotechadv.2011.09.015 Prey L., Kipp S., Hu Y., and Schmidhalter U., 2019, Nitrogen use efficiency and carbon traits of high-yielding european hybrid vs. line winter wheat cultivars: potentials and limitations, Frontiers in Plant Science, 9: 1988. https://doi.org/10.3389/fpls.2018.01988 Raj S., and Nadarajah K., 2022, QTL and candidate genes: techniques and advancement in abiotic stress resistance breeding of major cereals, International Journal of Molecular Sciences, 24(1): 6. https://doi.org/10.3390/ijms24010006 Rathan N., Krishnappa G., Singh A., and Govindan V., 2023, Mapping QTL for phenological and grain-related traits in a mapping population derived from high-zinc-biofortified wheat, Plants, 12(1): 220. https://doi.org/10.3390/plants12010220
RkJQdWJsaXNoZXIy MjQ4ODYzMg==