BE_2024v14n4

Bioscience Evidence 2024, Vol.14, No.4, 161-171 http://bioscipublisher.com/index.php/be 170 Cluzet B., Lafaysse M., Cosme E., Albergel C., Meunier L., and Dumont M., 2021, CrocO_v1.0: a particle filter to assimilate snowpack observations in a spatialised framework, Geoscientific Model Development, 14: 1595-1614. https://doi.org/10.5194/gmd-14-1595-2021 Collados-Lara A., Pardo‐Igúzquiza E., and Pulido-Velazquez D., 2019, A distributed cellular automata model to simulate potential future impacts of climate change on snow cover area, Advances in Water Resources, 124: 106-119. https://doi.org/10.1016/j.advwatres.2018.12.010 Dong C., 2016, Assessing the availability of remote sensing hydrological modeling and in situ observations in snow cover research: a review, Journal of Hydrology, 561: 573-583. https://doi.org/10.1016/j.jhydrol.2018.04.027 Fayad A., Gascoin S., Faour G., López-Moreno J., Drapeau L., Page M., and Escadafal R., 2017, Snow hydrology in Mediterranean mountain regions: a review, Journal of Hydrology, 551: 374-396. https://doi.org/10.1016/j.jhydrol.2017.05.063 Harpold A., 2016, Diverging sensitivity of soil water stress to changing snowmelt timing in the Western U.S, Advances in Water Resources, 92: 116-129. https://doi.org/10.1016/j.advwatres.2016.03.017 Harpold A., and Brooks P., 2018, Humidity determines snowpack ablation under a warming climate, Proceedings of the National Academy of Sciences of the United States of America, 115: 1215-1220. https://doi.org/10.1073/pnas.1716789115 Havens S., Marks D., Kormos P., and Hedrick A., 2017, Spatial modeling for resources framework (SMRF): a modular framework for developing spatial forcing data for snow modeling in mountain basins, Computers & Geosciences, 109: 295-304. https://doi.org/10.1016/j.cageo.2017.08.016 Irannezhad M., Ronkanen A., and Malekian A., 2022, Editorial: climate impacts on snowpack dynamics, Frontiers in Earth Science, 10: 970981. https://doi.org/10.3389/feart.2022.970981 Jusselme M., Saccone P., Zinger L., Faure M., Roux X., Guillaumaud N., Bernard L., Clément J., and Poly F., 2016, Variations in snow depth modify N-related soil microbial abundances and functioning during winter in subalpine grassland. Soil Biology and Biochemistry, 92: 27-37. https://doi.org/10.1016/j.soilbio.2015.09.013 Krogh S., Broxton P., Manley P., and Harpold A., 2020, Using process based snow modeling and lidar to predict the effects of forest thinning on the northern Sierra Nevada snowpack, Frontiers in Forests and Global Change, 3: 21. https://doi.org/10.3389/ffgc.2020.00021 Larue F., Royer A., Sève D., Roy A., and Cosme E., 2018, Assimilation of passive microwave AMSR-2 satellite observations in a snowpack evolution model over northeastern Canada, Hydrology and Earth System Sciences, 22(11): 5711-5734. https://doi.org/10.5194/hess-22-5711-2018 Livneh B., and Badger A., 2020, Drought less predictable under declining future snowpack, Nature Climate Change, 10: 452-458. https://doi.org/10.1038/s41558-020-0754-8 Mankin J., Viviroli D., Singh D., Hoekstra A., and Diffenbaugh N., 2015, The potential for snow to supply human water demand in the present and future, Environmental Research Letters, 10(11): 114016. https://doi.org/10.1088/1748-9326/10/11/114016 Mote P., Li S., Lettenmaier D., Xiao M., and Engel R., 2018, Dramatic declines in snowpack in the western US, npj Climate and Atmospheric Science, 1: 1-6. https://doi.org/10.1038/s41612-018-0012-1 Pelak N., Sohrabi M., Safeeq M., and Conklin M., 2022, Improving snow water equivalent simulations in an alpine basin by blending precipitation gauge and snow pillow measurements, Hydrological Processes, 37(1): e14796. https://doi.org/10.1002/hyp.14796 Piazzi G., Campo L., Gabellani S., Castelli F., Cremonese E., Cella U., Stevenin H., and Ratto S., 2018, An Enkf-based scheme for snow multivariable data assimilation at an alpine site, Journal of Hydrology and Hydromechanics, 67(1): 4-19. https://doi.org/10.2478/johh-2018-0013 Pritchard H., Farinotti D., and Colwell S., 2021, Measuring changes in snowpack SWE continuously on a landscape scale using lake water pressure, Journal of Hydrometeorology, 22(4): 795-811. https://doi.org/10.1175/JHM-D-20-0206.1 Qin Y., Abatzoglou J., Siebert S., Huning L., Aghakouchak A., Mankin J., Hong C., Tong D., Davis S., and Mueller N., 2020, Agricultural risks from changing snowmelt, Nature Climate Change, 10: 459-465. https://doi.org/10.1038/s41558-020-0746-8 Rixen C., Høye T., Macek P., Aerts R., Alatalo J., Andeson J., Arnold P., Barrio I., Bjerke J., Bjorkman M., Blok D., Blume‐Werry G., Boike J., Bokhorst S., Carbognani M., Christiansen C., Convey P., Cooper E., Cornelissen J., Coulson S., Dorrepaal E., Elberling B., Elmendorf S., Elphinstone C., Forte T., Frei E., Geange S., Gehrmann F., Gibson C., Grogan P., Rechsteiner A., Harte J., Henry G., Inouye D., Irwin R., Jespersen G., Jónsdóttir I., Jung J., Klinges D., Kudo G., Lämsä J., Lee H., Lembrechts J., Lett S., Lynn J., Mann H., Mastepanov M., Morse J., Myers-Smith I., Olofsson J., Paavola R., Petraglia A., Phoenix G., Semenchuk P., Siewert M., Slatyer R., Spasojevic M., Suding K., Sullivan P., Thompson K., Väisänen M., Vandvik V., Venn S., Walz J., Way R., Welker J., Wipf S., and Zong S., 2022, Winters are changing: snow effects on Arctic and alpine tundra ecosystems, Arctic Science, 8(3): 572-608. https://doi.org/10.1139/as-2020-0058

RkJQdWJsaXNoZXIy MjQ4ODYzMg==