BE_2024v14n4

Bioscience Evidence 2024, Vol.14, No.4, 143-153 http://bioscipublisher.com/index.php/be 152 Klasson K., Ackerson M., Clausen E., and Gaddy J., 1991, Bioreactor design for synthesis gas fermentations, Fuel, 70: 605-614. https://doi.org/10.1016/0016-2361(91)90174-9 Konstantinidi S., Skiadas I., and Gavala H., 2023, Microbial enrichment techniques on syngas and CO2 targeting production of higher acids and alcohols, Molecules, 28(6): 2562. https://doi.org/10.3390/molecules28062562 Li Y., Yang S., Ma D., Song W., Gao C., Liu L., and Chen X., 2021, Microbial engineering for the production of C2-C6 organic acids, Natural Product Reports, 38(8): 1518-1546. https://doi.org/10.1039/D0NP00062K Liebal U., Blank L., and Ebert B., 2018, CO2 to succinic acid - Estimating the potential of biocatalytic routes, Metabolic Engineering Communications, 7: e00075. https://doi.org/10.1016/j.mec.2018.e00075 Lin J., 2024, Sustainable Development strategy of bioenergy and global energy transformation, Journal of Energy Bioscience, 15(1): 10-19. Liu H., Song T., Fei K., Wang H., and Xie J., 2018, Microbial electrosynthesis of organic chemicals from CO2 by Clostridium scatologenes ATCC 25775T, Bioresources and Bioprocessing, 5: 1-10. https://doi.org/10.1186/s40643-018-0195-7 Liu X., Feng X., Ding Y., Gao W., Xian M., Wang J., and Zhao G., 2020, Characterization and directed evolution of propionyl-CoA carboxylase and its application in succinate biosynthetic pathway with two CO2 fixation reactions, Metabolic Engineering, 62: 42-50. https://doi.org/10.1016/j.ymben.2020.08.012 Lo S., Chiang E., Yang Y., Li S., Peng J., Tsai S., Wu D., Yu C., Huang C., Su T., Tsuge K., and Huang C., 2021, Growth enhancement facilitated by gaseous CO2 through heterologous expression of reductive tricarboxylic acid cycle genes in Escherichia coli, Fermentation, 7(2): 98. https://doi.org/10.3390/fermentation7020098 Lorenzo R., Serra I., Porro D., and Branduardi P., 2022, State of the art on the microbial production of industrially relevant organic acids, Catalysts, 12(2): 234. https://doi.org/10.3390/catal12020234 Mateos R., Sotres A., Alonso R., Morán A., and Escapa A., 2019, Enhanced CO2 conversion to acetate through microbial electrosynthesis (MES) by continuous headspace gas recirculation, Energies, 12(17): 3297. https://doi.org/10.3390/en12173297 Pacheco M., Moura P., and Silva C., 2023, A systematic review of syngas bioconversion to value-added products from 2012 to 2022, Energies, 16(7): 3241. https://doi.org/10.3390/en16073241 Reddy M., Kumar G., Mohanakrishna G., Shobana S., and Al-Raoush R., 2020, Review on the production of medium and small chain fatty acids through waste valorization and CO2 fixation, Bioresource Technology, 309: 123400. https://doi.org/10.1016/j.biortech.2020.123400 Renaudie M., Clion V., Dumas C., Vuilleumier S., and Ernst B., 2021, Intensification and optimization of continuous hydrogen production by dark fermentation in a new design liquid/gas hollow fiber membrane bioreactor, Chemical Engineering Journal, 416: 129068. https://doi.org/10.1016/j.cej.2021.129068 Salehizadeh H., Yan N., and Farnood R., 2020, Recent advances in microbial CO2 fixation and conversion to value-added products, Chemical Engineering Journal, 390: 124584. https://doi.org/10.1016/j.cej.2020.124584 Sánchez-Andrea I., Guedes I., Hornung B., Boeren S., Lawson C., Sousa D., Bar-Even A., Claassens N., and Stams A., 2020, The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans, Nature Communications, 11(1): 1-12. https://doi.org/10.1038/s41467-020-18906-7 Schuchmann K., and Müller V., 2014, Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria, Nature Reviews Microbiology, 12: 809-821. https://doi.org/10.1038/nrmicro3365 Song J., Kim Y., Lim M., Lee H., Lee J., and Shin W., 2011, Microbes as electrochemical CO2 conversion catalysts, ChemSusChem, 4(5): 587-590. https://doi.org/10.1002/cssc.201100107 Vassilev I., Hernandez P., Batlle-Vilanova P., Freguia S., Krömer J., Keller J., Ledezma P., and Virdis B., 2018, Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide, ACS Sustainable Chemistry and Engineering, 6(7): 8485-8493. https://doi.org/10.1021/acssuschemeng.8b00739 Wang M.H., 2024, Study on electron transfer mechanisms of electroactive bacteria in microbial fuel cells, Journal of Energy Bioscience, 15(2): 87-97. https://doi.org/10.5376/jeb.2024.15.0009 Wang G., Yuan Z., Wang X., and Zhang G., 2023, Microbial conversion and utilization of CO2, Annals of Civil and Environmental Engineering, 7: 45-60. https://doi.org/10.29328/journal.acee.1001055 Wu H., Li Q., Li Z., and Ye Q., 2012, Succinic acid production and CO2 fixation using a metabolically engineered Escherichia coli in a bioreactor equipped with a self-inducing agitator, Bioresource technology, 107: 376-84. https://doi.org/10.1016/j.biortech.2011.12.043 Xiao K., Ge T., Wu X., Peacock C., Zhu Z., Peng J., Bao P., Wu J., and Zhu Y., 2020, Metagenomic and 14C tracing evidence for autotrophic microbial CO2 fixation in paddy soils, Environmental Microbiology, 23(2): 924-933. https://doi.org/10.1111/1462-2920.15204

RkJQdWJsaXNoZXIy MjQ4ODYzMg==