BE_2024v14n3

Bioscience Evidence 2024, Vol.14, No.3, 131-142 http://bioscipublisher.com/index.php/be 141 Li G., Wang J., and Reetz M., 2017, Biocatalysts for the pharmaceutical industry created by structure-guided directed evolution of stereoselective enzymes, Bioorganic & Medicinal Chemistry, 26(7): 1241-1251. https://doi.org/10.1016/j.bmc.2017.05.021 Mariz B., Carvalho S., Batalha I., and Pina A., 2021, Artificial enzymes bringing together computational design and directed evolution, Organic & Biomolecular Chemistry, 19(9): 1915-1925. https://doi.org/10.1039/d0ob02143a Markel U., Essani K., Besirlioglu V., Schiffels J., Streit W., and Schwaneberg U., 2019, Advances in ultrahigh-throughput screening for directed enzyme evolution, Chemical Society Reviews, 49(1): 233-262. https://doi.org/10.1039/c8cs00981c McCarty N.S., Graham A.E., Studená L., and Ledesma-Amaro R., 2020, Multiplexed CRISPR technologies for gene editing and transcriptional regulation, Nature Communications, 11: 1281. https://doi.org/10.1038/s41467-020-15053-x Otten R., Padua R., Bunzel H., Nguyen V., Pitsawong W., Patterson M., Sui S., Perry S., Cohen A., Hilvert D., and Kern D., 2020, How directed evolution reshapes energy landscapes in enzymes to boost catalysis, Science (New York, N.Y.), 370: 1442-1446. https://doi.org/10.1126/science.abd3623 Parikh M., and Matsumura I., 2005, Site-saturation mutagenesis is more efficient than DNA shuffling for the directed evolution of beta-fucosidase from beta-galactosidase, Journal of Molecular Biology, 352(3): 621-628. https://doi.org/10.1016/J.JMB.2005.07.020 Planas-Iglesias J., Marques S., Pinto G., Musil M., Stourac J., Damborský J., and Bednář D., 2021, Computational design of enzymes for biotechnological applications, Biotechnology Advances, 47: 107696. https://doi.org/10.1016/j.biotechadv.2021.107696 Porter J., Rusli R., and Ollis D., 2016, Directed evolution of enzymes for industrial biocatalysis, ChemBioChem, 17(3): 197-203. https://doi.org/10.1002/cbic.201500280 Prier C., and Arnold F., 2015, Chemomimetic biocatalysis: exploiting the synthetic potential of cofactor-dependent enzymes to create new catalysts, Journal of the American Chemical Society, 137(44): 13992-14006. https://doi.org/10.1021/jacs.5b09348 Reetz M., and Carballeira J., 2007, Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes, Nature Protocols, 2: 891-903. https://doi.org/10.1038/nprot.2007.72 Reetz M., Kahakeaw D., and Lohmer R., 2008, Addressing the numbers problem in directed evolution, ChemBioChem, 9(11): 1797-1804. https://doi.org/10.1002/cbic.200800298 Reetz M., Prasad S., Carballeira J., Gumulya Y., and Bocola M., 2010, Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods, Journal of the American Chemical Society, 132(26): 9144-9152. https://doi.org/10.1021/ja1030479 Ribeiro L., Amarelle V., Alves L., Siqueira G., Lovate G., Borelli T., and Guazzaroni M., 2019, Genetically engineered proteins to improve biomass conversion: new advances and challenges for tailoring biocatalysts, Molecules, 24(16): 2879. https://doi.org/10.3390/molecules24162879 Saldarriaga-Hernández S., Velasco-Ayala C., Flores P., Rostro-Alanis M., Parra-Saldívar R., Iqbal H., and Carrillo-Nieves D., 2020, Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes, International Journal of Biological Macromolecules, 161: 1099-1116. https://doi.org/10.1016/j.ijbiomac.2020.06.047 Savile C., Janey J., Mundorff E., Moore J., Tam S., Jarvis W., Colbeck J., Krebber A., Fleitz F., Brands J., Devine P., Huisman G., and Hughes G., 2010, Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture, Science, 329: 305-309. https://doi.org/10.1126/science.1188934 Schafer J., Zoi I., Antoniou D., and Schwartz S., 2019, Optimization of the turnover in artificial enzymes via directed evolution results in the coupling of protein dynamics to chemistry, Journal of the American Chemical Society, 141(26): 10431-10439. https://doi.org/10.1021/jacs.9b04515 Shao W., Ma K., Le Y., Wang H., and Sha C., 2017, Development and use of a novel random mutagenesis method: in situ error-prone PCR (is-epPCR), Methods in Molecular Biology, 1498: 497-506. https://doi.org/10.1007/978-1-4939-6472-7_34 Turner N., 2009, Directed evolution drives the next generation of biocatalysts, Nature Chemical Biology, 5(8): 567-573. https://doi.org/10.1038/nchembio.203 Wiltschi B., Cernava T., Dennig A., Galindo M., Geier M., Gruber S., Haberbauer M., Heidinger P., Acero E., Kratzer R., Luley-Goedl C., Müller C., Pitzer J., Ribitsch D., Sauer M., Schmölzer K., Schnitzhofer W., Sensen C., Soh J., Steiner K., Winkler C., Winkler M., and Wriessnegger T., 2020, Enzymes revolutionize the bioproduction of value-added compounds: from enzyme discovery to special applications, Biotechnology Advances, 40: 107520. https://doi.org/10.1016/j.biotechadv.2020.107520 Wu Z., Kan S., Lewis R., Wittmann B., and Arnold F., 2019, Machine learning-assisted directed protein evolution with combinatorial libraries, Proceedings of the National Academy of Sciences, 116: 8852-8858. https://doi.org/10.1073/pnas.1901979116

RkJQdWJsaXNoZXIy MjQ4ODYzMg==