BE_2024v14n3

Bioscience Evidence 2024, Vol.14, No.3, 122-130 http://bioscipublisher.com/index.php/be 130 Tao F., and Zhang Z., 2010, Adaptation of maize production to climate change in North China Plain: Quantify the relative contributions of adaptation options, European Journal of Agronomy, 33(2): 103-116. https://doi.org/10.1016/j.eja.2010.04.002 Teixeira J., Weldekidan T., Leon N., Flint-Garcia S., Flint-Garcia S., Holland J., Holland J., Lauter N., Lauter N., Murray S., Xu W., Hessel D., Kleintop A., Hawk J., Hallauer A., and Wisser R., 2014, Hallauer’s Tusón: a decade of selection for tropical-to-temperate phenological adaptation in maize, Heredity, 114: 229-240. https://doi.org/10.1038/hdy.2014.90 Wisser R., Fang Z., Holland J., Teixeira J., Dougherty J., Weldekidan T., Leon N., Flint-Garcia S., Lauter N., Murray S., Xu W., and Hallauer A., 2019, The genomic basis for short-term evolution of environmental adaptation in maize, Genetics, 213(4): 1479-1494. https://doi.org/10.1534/genetics.119.302780 Zafar S., Iqbal A., Azhar M., Atif R., Rana I., Rehman H., Nawaz M., and Chung G., 2019, GM maize for abiotic stresses: potentials and opportunities, In: Wani, S. (eds) Recent Approaches in Omics for Plant Resilience to Climate Change. Springer, Cham. pp.229-249. https://doi.org/10.1007/978-3-030-21687-0_10 Zahn L., 2017, Estimating temperate adaptation in ancient maize, Science, 357: 467-467. https://doi.org/10.1126/SCIENCE.357.6350.467-A

RkJQdWJsaXNoZXIy MjQ4ODYzMg==