BE_2024v14n3

Bioscience Evidence 2024, Vol.14, No.3, 122-130 http://bioscipublisher.com/index.php/be 129 suggestions on our manuscript. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Brandenburg J., Mary-Huard T., Rigaill G., Hearne S., Corti H., Joets J., Vitte C., Charcosset A., Nicolas S., and Tenaillon M., 2017, Independent introductions and admixtures have contributed to adaptation of European maize and its American counterparts, PLoS Genetics, 13(3): e1006666. https://doi.org/10.1371/journal.pgen.1006666 Brandenburg J., Mary-Huard T., Rigaill G., Hearne S., Corti H., Joets J., Vitte C., Charcosset A., Nicolas S., and Tenaillon M., 2017, Independent introductions and admixtures have contributed to adaptation of European maize and its American counterparts, Camus-Kulandaivelu L., Veyrieras J., Madur D., Combes V., Fourmann M., Barraud S., Dubreuil P., Gouesnard B., Manicacci D., and Charcosset A., 2006, Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene, Genetics, 172: 2449-2463. https://doi.org/10.1534/genetics.105.048603 Camus-Kulandaivelu L., Veyrieras J., Madur D., Combes V., Fourmann M., Barraud S., Dubreuil P., Gouesnard B., Manicacci D., and Charcosset A., 2006, Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene, Genetics, 172: 2449-2463. https://doi.org/10.1534/genetics.105.048603 Choquette N., Holland J., Weldekidan T., Drouault J., León N., Flint-Garcia S., Lauter N., Murray S., Xu W., and Wisser R., 2023, Environment-specific selection alters flowering-time plasticity and results in pervasive pleiotropic responses in maize, The New Phytologist, 238(2): 737-749. https://doi.org/10.1111/nph.18769 Corral J., Puga N., González J., Parra J., Eguiarte D., Holland J., and García G., 2008, Climatic adaptation and ecological descriptors of 42 Mexican maize races, Crop Science, 48: 1502-1512. https://doi.org/10.2135/CROPSCI2007.09.0518 Fenza M., Hogg B., Grant J., and Barth S., 2017, Transcriptomic response of maize primary roots to low temperatures at seedling emergence, PeerJ, 5: e2839. https://doi.org/10.7717/peerj.2839 Guo T.X., 2024, Unraveling key genetic factors in corn quality improvement through GWAS, Maize Genomics and Genetics, 15(1): 9-16. Hallauer A., and Carena M., 2013, Adaptation of tropical maize germplasm to temperate environments, Euphytica, 196: 1-11. https://doi.org/10.1007/s10681-013-1017-9 Hellin J., Bellon M., and Hearne S., 2014, Maize landraces and adaptation to climate change in mexico, Journal of Crop Improvement, 28: 484-501. https://doi.org/10.1080/15427528.2014.921800 Hu H., Crow T., Nojoomi S., Schulz A., Hufford M., Flint-Garcia S., Sawers R., Rellán-Álvarez R., Estévez-Palmas J., Ross-Ibarra J., and Runcie D., 2022, Allele-specific expression reveals multiple paths to highland adaptation in maize, Molecular Biology and Evolution, 39(11): msac239. https://doi.org/10.1093/molbev/msac239 Jiang C., Edmeades G., Armstead I., Lafitte H., Hayward M., and Hoisington D., 1999, Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers, Theoretical and Applied Genetics, 99: 1106-1119. https://doi.org/10.1007/s001220051315 Jodage K., Kuchanur P., Zaidi P., Patil A., Seetharam K., Vinayan M., and Arunkumar B., 2018, Genetic analysis of heat adaptive traits in tropical maize (Zea mays L.), International Journal of Current Microbiology and Applied Sciences, 7: 3237-3246. https://doi.org/10.20546/IJCMAS.2018.701.387 Kumar R., Bridgit T., and Chanchala A., 2018, Physical and chemical properties of sandy soil as influenced by the application of hydrogel and mulching in maize (Zeamays L.), International Journal of Current Microbiology and Applied Sciences, 7(7): 3612-3618. https://doi.org/10.20546/ijcmas.2018.707.420 Lafitte H., Edmeades G., and Johnson, E., 1997, Temperature responses of tropical maize cultivars selected for broad adaptation, Field Crops Research, 49: 215-229. https://doi.org/10.1016/S0378-4290(96)01006-4 Lóránt A., Ross-Ibarra J., and Tenaillon M., 2018, Genomics of long- and short-term adaptation in maize and teosintes, Methods in Molecular Biology, 2090: 289-311. https://doi.org/10.1007/978-1-0716-0199-0_12 Moradi R., Koocheki A., and Mahallati M., 2014, Adaptation of maize to climate change impacts in Iran, Mitigation and Adaptation Strategies for Global Change, 19: 1223-1238. https://doi.org/10.1007/s11027-013-9470-2 Swarts K., Swarts K., Gutaker R., Benz B., Blake M., Bukowski R., Holland J., Kruse-Peeples M., Lepak N., Prim L., Romay M., Ross-Ibarra J., Sanchez-Gonzalez J., Schmidt C., Schuenemann V., Krause J., Krause J., Matson R., Weigel D., Buckler E., and Burbano H., 2017, Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America, Science, 357: 512-515. https://doi.org/10.1126/science.aam9425

RkJQdWJsaXNoZXIy MjQ4ODYzMg==