BE_2024v14n3

Bioscience Evidence 2024, Vol.14, No.3, 110-121 http://bioscipublisher.com/index.php/be 120 Kumar P., and Dubey K., 2019, Citric acid cycle regulation: back bone for secondary metabolite production, In: Gupta V.K., and Pandey A., eds., New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, pp.165-181. https://doi.org/10.1016/B978-0-444-63504-4.00013-X Kumari A., 2018, Citric Acid Cycle, In: Kumari A., ed., Sweet Biochemistry, Academic Press, pp.7-11. https://doi.org/10.1016/B978-0-12-814453-4.00002-9 Kynshi B., Sachu M., and Syiem M., 2021, Modulation in isocitrate dehydrogenase activity under citrate enrichment affects carbon and nitrogen fixations in the cyanobacterium Nostoc muscorum Meg 1, Biochimie, 186: 94-104. https://doi.org/10.1016/j.biochi.2021.03.018 Li C., Liu F., Shen Y., Tian Y., and Han F., 2023, Research progress on the mechanism of glycolysis in ovarian cancer, Frontiers in Immunology, 14: 1284853. https://doi.org/10.3389/fimmu.2023.1284853 Luo Y., Ma J., and Lu W., 2020, The significance of mitochondrial dysfunction in cancer, International Journal of Molecular Sciences, 21(16): 5598. https://doi.org/10.3390/ijms21165598 MacLean A., Legendre F., and Appanna V., 2023, The tricarboxylic acid (TCA) cycle: a malleable metabolic network to counter cellular stress, Critical Reviews in Biochemistry and Molecular Biology, 58: 81-97. https://doi.org/10.1080/10409238.2023.2201945 Matschinsky F., and Wilson D., 2019, The central role of glucokinase in glucose homeostasis: a perspective 50 years after demonstrating the presence of the enzyme in islets of langerhans, Frontiers in Physiology, 10: 148. https://doi.org/10.3389/fphys.2019.00148 Mccammon M., Epstein C., Przybyla-Zawislak B., McAlister-Henn L., and Butow R., 2003, Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes, Molecular Biology of the Cell, 14(3): 958-972. https://doi.org/10.1091/MBC.E02-07-0422 Neitzel C., Demuth P., Wittmann S., and Fahrer J., 2020, Targeting altered energy metabolism in colorectal cancer: oncogenic reprogramming, the central role of the TCA cycle and therapeutic opportunities, Cancers, 12(7): 1731. https://doi.org/10.3390/cancers12071731 Patil N., Bohannon J., Hernandez A., Patil T., and Sherwood E., 2019, Regulation of leukocyte function by citric acid cycle intermediates, Journal of Leukocyte Biology, 106: 105-117. https://doi.org/10.1002/JLB.3MIR1118-415R Petillo A., Abruzzese V., Koshal P., Ostuni A., and Bisaccia F., 2020, Extracellular citrate is a trojan horse for cancer cells, Frontiers in Molecular Biosciences, 7: 593866.. https://doi.org/10.3389/fmolb.2020.593866 Plomgaard P., Hu C., Hansen J., Zhao X., Hoene M., Wang X., Secher N., Haering H., Lehmann R., Xu G., and Weigert C., 2018, Metabolic activity of the liver during exercise—a metabolomics approach, Diabetes, 67(Supplement_1): 1856-P. https://doi.org/10.2337/db18-1856-P Prochownik E., and Wang H., 2021, The metabolic fates of pyruvate in normal and neoplastic cells, Cells, 10(4): 762. https://doi.org/10.3390/cells10040762 Roosterman D., and Cottrell G., 2021, Rethinking the citric acid cycle: connecting pyruvate carboxylase and citrate synthase to the flow of energy and material, International Journal of Molecular Sciences, 22(2): 604. https://doi.org/10.3390/ijms22020604 Sauer D., Trebesch N., Marden J., Cocco N., Song J., Koide A., Koide S., Tajkhorshid E., and Wang D., 2020, Structural basis for the reaction cycle of DASS dicarboxylate transporters, eLife, 9: e61350. https://doi.org/10.7554/eLife.61350 Schlaepfer I., and Joshi M., 2020, CPT1A-mediated fat oxidation, mechanisms and therapeutic potential, Endocrinology, 161(2): bqz046. https://doi.org/10.1210/endocr/bqz046 Selinski J., and Scheibe R., 2020, Central metabolism in mammals and plants as a hub for controlling cell fate, Antioxidants & Redox Signaling, 34: 1025-1047. https://doi.org/10.1089/ars.2020.8121 Shelbayeh O., Arroum T., Morris S., and Busch K., 2023, PGC-1α is a master regulator of mitochondrial lifecycle and ROS stress response, Antioxidants, 12(5): 1075. https://doi.org/10.3390/antiox12051075 Shimizu K., and Matsuoka Y., 2019, Redox rebalance against genetic perturbations and modulation of central carbon metabolism by the oxidative stress regulation, Biotechnology Advances, 37(8): 107441. https://doi.org/10.1016/j.biotechadv.2019.107441 Yu T., Wang Y., Fan Y., Fang N., Wang T., Xu T., and Shu Y., 2019, CircRNAs in cancer metabolism: a review, Journal of Hematology & Oncology, 12: 1-10. https://doi.org/10.1186/s13045-019-0776-8 Zangari J., Petrelli F., Maillot B., and Martinou J., 2020, The multifaceted pyruvate metabolism: role of the mitochondrial pyruvate carrier, Biomolecules, 10(7): 1068. https://doi.org/10.3390/biom10071068 Zhang W., Gao J., Shen F., Ma X., Wang Z., Hou X., Hao E., Hou Y., and Bai G., 2020, Cinnamaldehyde changes the dynamic balance of glucose metabolism by targeting ENO1, Life Sciences, 258: 118151. https://doi.org/10.1016/j.lfs.2020.118151

RkJQdWJsaXNoZXIy MjQ4ODYzMg==