BE_2024v14n3

Bioscience Evidence 2024, Vol.14, No.3, 110-121 http://bioscipublisher.com/index.php/be 119 Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Bergé M., Pezzatti J., González-Ruiz V., Degeorges L., Mottet-Osman G., Rudaz S., and Viollier P., 2020, Bacterial cell cycle control by citrate synthase independent of enzymatic activity, eLife, 9: e52272. https://doi.org/10.7554/eLife.52272 Bodner G., 1986, Metabolism: Part II. the tricarboxylic acid (TCA), citric acid, or krebs cycle, Journal of Chemical Education, 63: 673. https://doi.org/10.1021/ED063P673 Cani P., Hul M., Lefort C., Depommier C., Rastelli M., and Everard A., 2019, Microbial regulation of organismal energy homeostasis, Nature Metabolism, 1: 34-46. https://doi.org/10.1038/s42255-018-0017-4 Chen Y., Cai G., Xia B., Wang X., Zhang C., Xie B., Shi X., Liu H., Lu J., Zhang R., Zhu M., Liu M., Yang S., Zhang D., Chu X., Khan R., Wang Y., and Wu J., 2020, Mitochondrial aconitase controls adipogenesis through mediation of cellular ATP production, The FASEB Journal, 34: 6688-6702. https://doi.org/10.1096/fj.201903224RR Cho S., Song N., Choi J., and Shin A., 2020, Effect of citric acid cycle genetic variants and their interactions with obesity, physical activity and energy intake on the risk of colorectal cancer: results from a nested case-control study in the UK Biobank, Cancers, 12(10): 2939. https://doi.org/10.3390/cancers12102939 Choi I., Son H., and Baek J., 2020, Tricarboxylic acid (TCA) cycle intermediates: regulators of immune responses, Life, 11(1): 69. https://doi.org/10.3390/life11010069 Dai W., and Jiang L., 2019, Dysregulated mitochondrial dynamics and metabolism in obesity, diabetes, and cancer, Frontiers in Endocrinology, 10: 570. https://doi.org/10.3389/fendo.2019.00570 Fernie A., Carrari F., and Sweetlove L., 2004, Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport, Current Opinion in Plant Biology, 7(3): 254-261. https://doi.org/10.1016/J.PBI.2004.03.007 Franco R., and Serrano-Marín J., 2022, The unbroken Krebs cycle. Hormonal‐like regulation and mitochondrial signaling to control mitophagy and prevent cell death, BioEssays, 45(3): 2200194. https://doi.org/10.1002/bies.202200194 Ghosh-Choudhary S., Liu J., and Finkel T., 2020, Metabolic regulation of cell fate and function, Trends in Cell Biology, 30(3): 201-212. https://doi.org/10.1016/j.tcb.2019.12.005 Golomb B., Koslik H., Han J., Guida A., Hamilton G., snd Kelley R., 2021, A pilot study of bioenergetic marker relationships in gulf war illness: phosphocreatine recovery vs. citric acid cycle intermediates, International Journal of Environmental Research and Public Health, 18(4): 1635. https://doi.org/10.3390/ijerph18041635 Granchi D., Baldini N., Ulivieri F., and Caudarella R., 2019, Role of citrate in pathophysiology and medical management of bone diseases, Nutrients, 11(11): 2576. https://doi.org/10.3390/nu11112576 Guo D., He H., Meng Y., Luo S., and Lu Z., 2022, Determiners of cell fates: the tricarboxylic acid cycle versus the citrate-malate shuttle, Protein & Cell, 14: 162-164. https://doi.org/10.1093/procel/pwac026 Hards K., Adolph C., Harold L., McNeil M., Cheung C., Jinich A., Rhee K., and Cook G., 2019, Two for the price of one: attacking the energetic-metabolic hub of mycobacteria to produce new chemotherapeutic agents, Progress in Biophysics and Molecular Biology, 152: 35-44. https://doi.org/10.1016/j.pbiomolbio.2019.11.003 Hughey C., and Crawford P., 2019, Pyruvate carboxylase wields a double-edged metabolic sword, Cell Metabolism, 29(6): 1236-1238. https://doi.org/10.1016/j.cmet.2019.05.013 Igamberdiev A., 2020, Citrate valve integrates mitochondria into photosynthetic metabolism, Mitochondrion, 52: 218-230. https://doi.org/10.1016/j.mito.2020.04.003 Iñigo M., Deja S., and Burgess S., 2021, Ins and outs of the TCA cycle: the central role of anaplerosis, Annual Review of Nutrition, 41: 19-47. https://doi.org/10.1146/annurev-nutr-120420-025558 Khan A., Salehi H., Alexia C., Valdivielso J., Bozic M., Lopez-Mejia I., Fajas L., Gerbal-Chaloin S., Daujat-Chavanieu M., Gitenay D., and Villalba M., 2022, Glucose starvation or pyruvate dehydrogenase activation induce a broad, ERK5-mediated, metabolic remodeling leading to fatty acid oxidation, Cells, 11(9): 1392. https://doi.org/10.3390/cells11091392 Kim Y., Lee W., Chung S., Yu B., Lee Y., and Hong J., 2022, Metabolic alterations of short-chain fatty acids and TCA cycle intermediates in human plasma from patients with gastric cancer, Life Sciences, 309: 121010. https://doi.org/10.2139/ssrn.4195321

RkJQdWJsaXNoZXIy MjQ4ODYzMg==