BE_2024v14n2

Bioscience Evidence 2024, Vol.14, No.2, 81-92 http://bioscipublisher.com/index.php/be 92 El-Dalatony M., Zheng Y., Ji M., Li X., and Salama E., 2020, Metabolic pathways for microalgal biohydrogen production: current progress and future prospectives, Bioresource Technology, 318: 124253. https://doi.org/10.1016/j.biortech.2020.124253 Fuess L., Zaiat M., and Nascimento C., 2019, Novel insights on the versatility of biohydrogen production from sugarcane vinasse via thermophilic dark fermentation: Impacts of pH-driven operating strategies on acidogenesis metabolite profiles, Bioresource Technology, 286: 121379. https://doi.org/10.1016/j.biortech.2019.121379 Gu X., Wang Y., Li H., Li J., and Wang S., 2020, Characteristics of biohydrogen production and performance of hydrogen-producing acetogen by increasing normal molasses wastewater proportion in anaerobic baffled reactor, Archaea, 2020(1): 8885662. https://doi.org/10.1155/2020/8885662 Jia D., He M., Tian Y., Shen S., Zhu X., Wang Y., Zhuang Y., Jiang W., and Gu Y., 2021, Metabolic engineering of gas-fermenting clostridium ljungdahlii for efficient co-production of isopropanol, 3-hydroxybutyrate, and ethanol, ACS Synthetic Biology, 10: 2628-2638. https://doi.org/10.1021/acssynbio.1c00235 Kracke F., Lai B., Yu S., and Krömer J., 2018, Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation - a chance for metabolic engineering, Metabolic Engineering, 45: 109-120. https://doi.org/10.1016/j.ymben.2017.12.003 Lee S., Kim M., Kang S., and Lee H., 2019, Biohydrogen production of obligate anaerobic archaeon Thermococcus onnurineus NA1 under oxic conditions via overexpression of frhAGB-encoding hydrogenase genes, Biotechnology for Biofuels, 12: 1-8. https://doi.org/10.1186/s13068-019-1365-3 Lin J., 2024, Sustainable Development strategy of bioenergy and global energy transformation, Journal of Energy Bioscience, 15(1): 10-19. Mumtha C., Subashri D., and Mahalingam P., 2022, Biohydrogen producing facultative anaerobic bacteria from different anaerobic sludge, Journal of Pure and Applied Microbiology, 16(3): 1861-1872. https://doi.org/10.22207/jpam.16.3.32 Nizzy A., Kannan S., and Anand S., 2020, Identification of hydrogen gas producing anaerobic bacteria isolated from sago industrial effluent, Current Microbiology, 77: 2544-2553. https://doi.org/10.1007/s00284-020-02092-2 Pason P., Tachaapaikoon C., Panichnumsin P., Ketbot P., Waeonukul R., Kosugi A., and Ratanakhanokchai K., 2020, One-step biohydrogen production from cassava pulp using novel enrichment of anaerobic thermophilic bacteria community, Biocatalysis and Agricultural Biotechnology, 27: 101658. https://doi.org/10.1016/j.bcab.2020.101658 Saidi R., Liebgott P., Gannoun H., Gaida L., Miladi B., Hamdi M., Bouallagui H., and Auria R., 2018, Biohydrogen production from hyperthermophilic anaerobic digestion of fruit and vegetable wastes in seawater: simplification of the culture medium of Thermotoga maritima, Waste management, 71: 474-484. https://doi.org/10.1016/j.wasman.2017.09.042 Saravanan A., Kumar P., Khoo K., Show P., Carolin C., Jackulin C., Jeevanantham S., Karishma S., Show K., Lee D., and Chang J., 2021, Biohydrogen from organic wastes as a clean and environment-friendly energy source: Production pathways, feedstock types, and future prospects, Bioresource Technology, 342: 126021. https://doi.org/10.1016/j.biortech.2021.126021 Sekoai P., and Daramola M., 2018, Effect of metal ions on dark fermentative biohydrogen production using suspended and immobilized cells of mixed bacteria, Chemical Engineering Communications, 205: 1011-1022. https://doi.org/10.1080/00986445.2018.1428958 Tang T., Chen Y., Liu M., Zhang Y., and Zhilong Y., 2021, Biohydrogen production, sludge granulation, and microbial community in an anaerobic inner cycle biohydrogen production (AICHP) reactor at different hydraulic retention times, International Journal of Hydrogen Energy, 46(59): 30300-30309. https://doi.org/10.1016/j.ijhydene.2021.06.186 Yu Y., Zhu X., Xu H., and Zhang X., 2019, Construction of an energy-conserving glycerol utilization pathways for improving anaerobic succinate production in Escherichia coli, Metabolic Engineering, 56: 181-189. https://doi.org/10.1016/j.ymben.2019.10.002 Zhang L., Li J., Ban Q., He J., and Jha A.K., 2012, Metabolic pathways of hydrogen production in fermentative acidogenic microflora, Journal of Microbiology and Biotechnology, 22(5): 668-673. https://doi.org/10.4014/jmb.1110.10076 Zhu S., Yang X., Zhang Z., Zhang H., Li Y., Zhang Y., and Zhang Q., 2021, Tolerance of photo-fermentative biohydrogen production system amended with biochar and nanoscale zero-valent iron to acidic environment, Bioresource Technology, 338: 125512. https://doi.org/10.1016/j.biortech.2021.125512

RkJQdWJsaXNoZXIy MjQ4ODYzMg==