BE_2024v14n2

Bioscience Evidence 2024, Vol.14, No.2, 69-80 http://bioscipublisher.com/index.php/be 79 Mosepele K., Kolding J., Bokhutlo T., Mosepele B., and Molefe M., 2022, The Okavango Delta: fisheries in a fluctuating floodplain system, Front. Environ. Sci., 10: 854835. https://doi.org/10.3389/fenvs.2022.854835 Mtewele Z., Jia G., and Xu X., 2023, Serengeti–Masai Mara ecosystem dynamics inferred from rainfall extremes, Environmental Research Letters, 18(11): 114026. https://doi.org/10.1088/1748-9326/ad01cb Muumbe T., Baade J., Singh J., Schmullius C., and Thau C., 2021, Terrestrial laser scanning for vegetation analyses with a special focus on savannas, Remote. Sens., 13: 507. https://doi.org/10.3390/rs13030507 Nabaloum A., Goetze D., Ouédraogo A., Porembski S., and Thiombiano A., 2021, Local perception of ecosystem services and their conservation in Sudanian savannas of Burkina Faso (West Africa), Journal of Ethnobiology and Ethnomedicine, 18(1): 8. https://doi.org/10.1186/s13002-022-00508-w Nghiyalwa H., Urban M., Baade J., Smit I., Ramoelo A., Mogonong B., and Schmullius C., 2021, Spatio-temporal mixed pixel analysis of savanna ecosystems: a review, Remote. Sens., 13: 3870. https://doi.org/10.3390/rs13193870 Osborne C., Charles‐Dominique T., Stevens N., Bond W., Midgley G., and Lehmann C., 2018, Human impacts in African savannas are mediated by plant functional traits,The New Phytologist, 220(1): 10-24. https://doi.org/10.1111/nph.15236 Owen‐Smith N., Hopcraft G., Morrison T., Chamaillé‐Jammes S., Hetem R., Bennitt E., and Langevelde F., 2020, Movement ecology of large herbivores in African savannas: current knowledge and gaps,Mammal Review, 50(3): 252-266. https://doi.org/10.1111/mam.12193 Pansu J., Hutchinson M., Anderson T., Beest M., Begg C., Begg K., Bonin A., Chama L., Chamaillé-Jammes S., Coissac E., Cromsigt J., Demmel M., Donaldson J., Guyton J., Hansen C., Imakando C., Iqbal A., Kalima D., Kerley G., Kurukura S., Landman M., Long R., Munuo I., Nutter C., Parr C., Potter A., Siachoono S., Taberlet P., Waiti E., Kartzinel T., and Pringle R., 2022, The generality of cryptic dietary niche differences in diverse large-herbivore assemblages, Proceedings of the National Academy of Sciences of the United States of America, 119(35): e2204400119. https://doi.org/10.1073/pnas.2204400119 Qin Q., Zhang F., Liu F., Wang C., and Liu H., 2021, Food web structure and trophic interactions revealed by stable isotope analysis in the midstream of the Chishui River, a tributary of the Yangtze River, China, Water, 13(2): 195. https://doi.org/10.3390/W13020195 Quansah E., Mauder M., Balogun A., Amekudzi L., Hingerl L., Bliefernicht J., and Kunstmann H., 2015, Carbon dioxide fluxes from contrasting ecosystems in the Sudanian Savanna in West Africa, Carbon Balance and Management, 10: 1-17. https://doi.org/10.1186/s13021-014-0011-4 Shan P., 2024, Research on the relationship between genome stability of grassland plants and ecosystem immunity, International Journal of Molecular Ecology and Conservation, 14(1): 1-9. https://doi.org/10.5376/ijmec.2024.14.0001 Siebert F., and Dreber N., 2019, Forb ecology research in dry African savannas: knowledge, gaps, and future perspectives, Ecology and Evolution, 9: 7875-7891. https://doi.org/10.1002/ece3.5307 Sitters J., and Venterink H., 2020, Herbivore dung stoichiometry drives competition between savanna trees and grasses, Journal of Ecology, 109: 2095-2106. https://doi.org/10.1111/1365-2745.13623 Staver A., Abraham J., Hempson G., Karp A., and Faith J., 2021, The past, present, and future of herbivore impacts on savanna vegetation, Journal of Ecology, 109: 2804-2822. https://doi.org/10.1111/1365-2745.13685 Stevens N., Lehmann C., Murphy B., and Durigan G., 2017, Savanna woody encroachment is widespread across three continents, Global Change Biology, 23(1): 235-244. https://doi.org/10.1111/gcb.13409 Thoresen J., Vermeire M., Venter Z., Wolfaard G., Krumins J., Cramer M., and Hawkins H., 2020, Fire and herbivory shape soil arthropod communities through habitat heterogeneity and nutrient cycling in savannas, Global Ecology and Conservation, 25: e01413. https://doi.org/10.1016/j.gecco.2020.e01413 Tripathi H., Woollen E., Carvalho M., Parr C., and Ryan C., 2021, Agricultural expansion in African savannas: effects on diversity and composition of trees and mammals, Biodiversity and Conservation, 30: 3279-3297. https://doi.org/10.1007/s10531-021-02249-w Webster A., Callealta F., Ganswindt A., and Bennett N., 2021, A non-invasive assessment of essential trace element utilization at different trophic levels in African wildlife, Journal of Environmental Management, 293: 112820. https://doi.org/10.1016/j.jenvman.2021.112820 Wei T., and Barros A., 2021, Prospects for long-term agriculture in southern africa: emergent dynamics of savannah ecosystems from remote sensing observations, Remote. Sens., 13: 2954. https://doi.org/10.3390/rs13152954

RkJQdWJsaXNoZXIy MjQ4ODYzMg==