BE_2024v14n2

Bioscience Evidence 2024, Vol.14, No.2, 56-68 http://bioscipublisher.com/index.php/be 68 Yang Y., Song H., Lai J., Li R., Wang Z., Jia H., and Yang Y., 2023, A Rehmannia glutinosa caffeic acid O-methyltransferase functional identification: reconstitution of the ferulic acid biosynthetic pathway in Saccharomyces cerevisiae using Rehmannia glutinosa enzymes, Biotechnology Journal, 18(11): 2300064. https://doi.org/10.1002/biot.202300064 Yang Y., Wang C., Li R., Zhang Z., Yang H., Chu C., and Li J., 2020a, Overexpression of RgPAL family genes involved in phenolic biosynthesis promotes the replanting disease development in Rehmannia glutinosa, Journal of Plant Physiology, 257: 153339. https://doi.org/10.1016/j.jplph.2020.153339 Yang Y., Yang H., Li R., Li C., Zeng L., Wang C., Li N., and Luo Z., 2021, ARehmannia glutinosa cinnamate 4-hydroxylase promotes phenolic accumulation and enhances tolerance to oxidative stress, Plant Cell Reports, 40: 375-391. https://doi.org/10.1007/s00299-020-02639-4 Yang Y., Zhang Z., Li R., Yi Y., Yang H., Wang C., Wang Z., and Liu Y., 2020b, RgC3Hinvolves in the biosynthesis of allelopathic phenolic acids and alters their release amount in Rehmannia glutinosa roots, Plants, 9(5): 567. https://doi.org/10.3390/plants9050567 Zhang K., Zhuang X., Guo X., Xu H., He Z., and Chen J., 2021, Cucurbit chlorotic yellows virus infecting Rehmannia glutinosa was detected in China, Plant Disease, 105(10): 3310. https://doi.org/10.1094/PDIS-02-21-0292-PDN Zhi J., Li Y., Zhang Z., Yang C., Geng X., Zhang M., Li X., Zuo X., Li M., Huang Y., Wang F., and Xie C., 2018, Molecular regulation of catalpol and acteoside accumulation in radial striation and non-radial striation of Rehmannia glutinosa tuberous root, International Journal of Molecular Sciences, 19(12): 3751. https://doi.org/10.3390/ijms19123751

RkJQdWJsaXNoZXIy MjQ4ODYzMg==