BE_2024v14n2

Bioscience Evidence 2024, Vol.14, No.2, 56-68 http://bioscipublisher.com/index.php/be 67 Huang C., Ouyang D., Niu L., Zhou J., Lin S., and Hu X., 2018, Study on quality evaluation of Dihuang (Rehmannia glutinosa) by two-dimension HPLC fingerprints and chemometrics methods, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China Journal of Chinese Materia Medica, 43(8): 1667-1674. https://doi.org/10.19540/j.cnki.cjcmm.20180224.001 Huang Z., Gong J., Lin W., Feng Z., Ma Y., Tu Y., Cai X., Liu J., Lv C., Lv X., Wu Q., Lu W., Zhao J., Ying Y., Li S., Ni W., and Chen H., 2022, Catalpol as a component of Rehmannia glutinosa protects spinal cord injury by inhibiting endoplasmic reticulum stress-mediated neuronal apoptosis, Frontiers in Pharmacology, 13: 860757. https://doi.org/10.3389/fphar.2022.860757 Jeon J., Park H., Park J., Kang T., Kwon K., Kim Y., Han J., Kim S., Sung S., and Yang T., 2019, Two complete chloroplast genome sequences and intra-species diversity for Rehmannia glutinosa (Orobanchaceae), Mitochondrial DNA Part B, 4: 176-177. https://doi.org/10.1080/23802359.2018.1545529 Kang J., Han J., Yang S., and Lee S., 2022, Co-expression analysis reveals differential expression of homologous genes associated with specific terpenoid biosynthesis in Rehmannia glutinosa, Genes, 13(6): 1092. https://doi.org/10.3390/genes13061092 Kim Y., Komakech R., Jeong D., Park Y., Lee T., Kim K., Lee A., Moon B., and Kang Y., 2020, Verification of the field productivity of Rehmannia glutinosa (Gaertn.) DC. developed through optimized in vitro culture method, Plants, 9(3): 317. https://doi.org/10.3390/plants9030317 Lempp M., Farke N., Kuntz M., Freibert S., Lill R., and Link H., 2019, Systematic identification of metabolites controlling gene expression in E. coli, Nature Communications, 10: 4463. https://doi.org/10.1038/s41467-019-12474-1 Li X., Gui R., Wang X., Ning E., Zhang L., Fan Y., Chen L., Yu L., Zhu J., Li Z., Wei L., Wang W., Li Z., Wei Y., and Wang X., 2023, Oligosaccharides isolated fromRehmannia glutinosa protect LPS-induced intestinal inflammation and barrier injury in mice, Frontiers in Nutrition, 10: 1139006. https://doi.org/10.3389/fnut.2023.1139006 Li X., Jiang C., Xu N., Li J., Meng F., and Zhai H., 2018, Sorting and identification of Rehmannia glutinosa germplasm resources based on EST-SSR, scanning electron microscopy micromorphology, and quantitative taxonomy, Industrial Crops and Products, 123: 303-314. https://doi.org/10.1016/J.INDCROP.2018.06.088 Li X., Zuo X., Li M., Yang X., Zhi J., Sun H., Xie C., Zhang Z., and Wang F., 2021, Efficient CRISPR/Cas9-mediated genome editing in Rehmannia glutinosa, Plant Cell Reports, 40: 1695-1707. https://doi.org/10.1007/s00299-021-02723-3 Li Y., Wang Y., Huang L., Chen C., An N., and Zheng X., 2022, Identification and functional characterization of tyrosine decarboxylase from Rehmannia glutinosa, Molecules, 27(5): 1634. https://doi.org/10.3390/molecules27051634 Liu W., Yin D., Zhang T., Qiao Q., Yang Y., and Wang W., 2020, Phytochemical profiles and antioxidant activity of Rehmannia glutinosa from different production locations, Chemistry & Biodiversity, 17(8): e2000341. https://doi.org/10.1002/cbdv.202000341 Lv H., Jia H., Cai W., Cao R., Xue C., and Dong N., 2022, Rehmannia glutinosa polysaccharides attenuates colitis via reshaping gut microbiota and short-chain fatty acid production, Journal of the Science of Food and Agriculture, 103(8): 3926-3938. https://doi.org/10.1002/jsfa.12326 Ota M., Nakazaki J., Tabuchi Y., Ono T., and Makino T., 2019, Historical and pharmacological studies on rehmannia root processing- Trends in usage and comparison of the immunostimulatory effects of its products with or without steam processing and pretreatment with liquor, Journal of Ethnopharmacology, 242: 112059. https://doi.org/10.1016/j.jep.2019.112059 Qin Y., Wang F., Lu C., Wang F., Wen Y., Liu Y., Gao S., Qi W., Li X., and Yang J., 2022, First report of tobacco mild green mosaic virus infecting Rehmannia glutinosa in China, Plant Disease, 106(11): 3004. https://doi.org/10.1094/PDIS-10-21-2283-PDN Rahmat E., Chung Y., Nam H., Lee A., Park J., and Kang Y., 2022, Evaluation of marker compounds and biological activity of in vitro regenerated and commercial Rehmannia glutinosa (Gaertn.) DC. roots subjected to steam processing, Evidence-based Complementary and Alternative Medicine: eCAM, 2022(1): 1506703. https://doi.org/10.1155/2022/1506703 Shi H., Xiao C., Zhou T., Jiang W., Yang C., Yu Y., Zhang X., and Zhang C., 2018, Genetic diversity and quality analysis of Rehmannia glutinosa in different germplasm, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China Journal of Chinese Materia Medica, 43(21): 4210-4216. https://doi.org/10.19540/j.cnki.cjcmm.20180726.008 Xu Z., Dai X., Su S., Yan H., Guo S., Qian D., and Duan J., 2019, Investigation of dynamic accumulation and regularity of nine glycosides and saccharides in Rehmannia glutinosa by rapid quantitative analysis technology, Journal of Separation Science, 42(8): 1489-1499. https://doi.org/10.1002/jssc.201801185 Yang C., Li X., Zhi J., Geng X., Hong L., Wang F., and Xie C., 2019, Molecular cloning and expression analysis of iridoid synthase genes from Rehmannia glutinosa, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China Journal of Chinese Materia Medica, 44(12): 2472-2479. https://doi.org/10.19540/j.cnki.cjcmm.20190325.103

RkJQdWJsaXNoZXIy MjQ4ODYzMg==