BE_2024v14n2

Bioscience Evidence 2024, Vol.14, No.2, 44-55 http://bioscipublisher.com/index.php/be 50 Figure 2 A framework for tailoring stable and effective synthetic microbial communities (SynComs) to enhance crop resiliency to environmental stresses (Adopted from Souza et al., 2020) Image caption: The selection of microbes in a culture collection is based on functional and empirical evidence, regardless of taxonomic classification. The rationale is driven by using both genome and microbial profiling data in the selection of key microbial candidates. Machine learning and artificial intelligence computational tools drive crucial steps in identifying microorganisms possessing traits for robust colonization, prevalence throughout plant development, and specific beneficial functions for plants. As a proof of concept for SynCom effectiveness, tools for plant phenotyping serve as an important diagnostic platform for measuring the impact of SynComs addressing the demand for both increased productivity and plant resiliency (Adopted from Souza et al., 2020) Figure 3 Effects of bacterial volatiles on the growth of R. solani AG8 (Adopted from Yin et al., 2022) Image caption: (A). The growth of AG8. (B). Inhibition of radial growth of AG8. CK1: ddH2O; B5: Pseudomonas sp. B5; B6: Streptomyces sp. B6; B7: Chryseobacteriumsp. B7; B11: Pseudomonas sp. B11; B12: Pseudomonas sp. B12; B17: Sphingomonas sp. B17; B20: Cupriavidus campinensis B20; B27: Asticcacaulis sp. B27; B43: Rhodococcus erythropolis B43; BJ: Janthinobacterium lividum BJ; P25: Pseudomonas sp. P25; P38: Chryseobacterium soldanellicola P38; P43: Chryseobacterium sp. P43; P44: Pedobacter sp. P44; C1: SynCom 1; C2: SynCom 2; C3: SynCom 3; C4: SynCom 4; C5: SynCom 5; C6: SynCom 6; C7: SynCom 7; C8: SynCom 8; C9: SynCom 9; C10: SynCom 10. The values are means ± SD. Asterisks indicate significant differences (p ≤ 0.05, Dunn test, n= 3) (Adopted from Yin et al., 2022)

RkJQdWJsaXNoZXIy MjQ4ODYzMg==