BE_2024v14n1

Bioscience Evidence 2024, Vol.14, No.1, 32-38 http://bioscipublisher.com/index.php/be 38 Sonnewald U., Fernie A.R., Gruissem W., Schläpfer P., Anjanappa R.B., Chang S.H., Ludewig F., Rascher U., Muller O., van Doorn A.M., Rabbi I.Y., and Zierer W., 2020, The Cassava Source-Sink project: opportunities and challenges for crop improvement by metabolic engineering, Plant J., 103(5): 1655-1665. https://doi.org/10.1111/tpj.14865 Tuo D., Yao Y., Yan P., Chen X.,Qu F., Xue W., Liu J., Kong H., Guo J., Cui H., Dai Z., and Shen W., 2023, Development of cassava common mosaic virus-based vector for protein expression and gene editing in cassava, Plant Methods, 19(1): 78. https://doi.org/10.1186/s13007-023-01055-5 Veley K.M., Elliott K., Jensen G., Zhong Z., Feng S., Yoder M., Gilbert K.B., Berry J.C., Lin Z.J.D., Ghoshal B., Gallego-Bartolomé J., Norton J., Motomura-Wages S., Carrington J.C., Jacobsen S.E., and Bart R.S., 2023, Improving cassava bacterial blight resistance by editing the epigenome, Nat. Commun., 14(1): 85. https://doi.org/10.1038/s41467-022-35675-7 Veley K.M., Okwuonu I., Jensen G., Yoder M., Taylor N.J., Meyers B.C., and Bart R.S., 2021, Gene tagging via CRISPR-mediated homology-directed repair in cassava, G3 (Bethesda), 11(4): jkab028. https://doi.org/10.1093/g3journal/jkab028 Wang Y.J., Lu X.H., Zhen X.H., Yang H., Che Y.N., Hou J.Y., Geng M.T., Liu J., Hu X.W., Li R.M., Guo J.C., and Yao Y., 2022, A Transformation and Genome Editing System for Cassava Cultivar SC8, Genes (Basel), 13(9): 1650. https://doi.org/10.3390/genes13091650 Yonis B., Carpio D., Wolfe M., Jannink J., Kulakow P., and Rabbi I., 2019, Improving root characterisation for genomic prediction in cassava, Scientific Reports, 10. https://doi.org/10.1038/s41598-020-64963-9

RkJQdWJsaXNoZXIy MjQ4ODYzMg==