BE_2024v14n1

Bioscience Evidence 2024, Vol.14, No.1, 24-31 http://bioscipublisher.com/index.php/be 31 technology be better utilized to provide more effective scientific bases for breeding for disease resistance in animals, promoting the healthy and sustainable development of the breeding industry. References Andrews A.H., Blowey R.W., Boyd H., and Eddy R.G., Eds., 2008, Bovine medicine: diseases and husbandry of cattle, John Wiley & Sons. Bishop S.C., and Woolliams J.A., 2014, Genomics and disease resistance studies in livestock, Livestock science, 166: 190-198. https://doi.org/10.1016/j.livsci.2014.04.034 PMid:26339300 PMCid:PMC4547482 Deng Y.Y., Liu X., Wang T., He C.Q., Guo S.C., and Qu X.Y., 2022, Research progress of genome-wide association study (GWAS) in gene mapping of important economic traits in chicken, China Poultry, 44(9): 80-86. Gavora J.S., 2019, Genetic control of disease and disease resistance in poultry, In: Manipulation of the Avian Genome, CRC Press, pp. 231-241. https://doi.org/10.1201/9780203748282-15 Ghosh M., Sharma N., Singh A.K., Gera M., Pulicherla K.K., and Jeong D.K., 2018, Transformation of animal genomics by next-generation sequencing technologies: a decade of challenges and their impact on genetic architecture, Critical reviews in biotechnology, 38(8): 1157-1175. https://doi.org/10.1080/07388551.2018.1451819 PMid:29631431 Ju Z.H., Wang C.F., Wang X.G., Yang C.H., Sun Y., Jiang Q., Wang F., Li M.J., Zhong J.F., and Huang J.M., 2015, Role of an SNP in alternative splicing of bovine NCF4 and mastitis susceptibility, PloS one, 10(11): e0143705. https://doi.org/10.1371/journal.pone.0143705 PMid:26600390 PMCid:PMC4658021 Kabir S.L., and Islam S.S., 2021, Biotechnological applications in poultry farming, Sustainable Agriculture Reviews 54: Animal Biotechnology for Livestock Production 1: 233-271. https://doi.org/10.1007/978-3-030-76529-3_8 Kurz J.P., Yang Z., Weiss R.B., Wilson D.J., Rood K.A., Liu G.E., and Wang Z., 2019, A genome-wide association study for mastitis resistance in phenotypically well-characterized Holstein dairy cattle using a selective genotyping approach, Immunogenetics, 71(1): 35-47. https://doi.org/10.1007/s00251-018-1088-9 PMid:30269158 Li B., and Ritchie M.D., 2021, From GWAS to gene: transcriptome-wide association studies and other methods to functionally understand GWAS discoveries, Frontiers in genetics, 12: 713230. https://doi.org/10.3389/fgene.2021.713230 PMid:34659337 PMCid:PMC8515949 Liu Q., Zhang K., Guo Z.T., Wang L., Han S.W., Li D.P., Li J.X., Zhang J.Y., and Wang X.Z., 2023, Trained immunity:modern immune control strategies for infectious diseases of animals, Chinese Journal of Veterinary Science, 43(6): 1342-1349. McKnite A.M., Bundy J.W., Moural T.W., Tart J.K., Johnson T.P., Jobman E.E., Barnes S.Y., Qiu J.K., Peterson D.A., Harris S.P., Rothschild M.F., Galeota J.A., Johnson R.K., Kachman S.D., and Ciobanu D.C., 2014, Genomic analysis of the differential response to experimental infection with porcine circovirus 2b, Animal genetics, 45(2): 205-214. https://doi.org/10.1111/age.12125 PMid:24444103 Ridha S.N., 2023, Investigating the genetic basis of disease resistance in animal populations, World Journal of Advanced Research and Reviews, 18(1): 073-079. https://doi.org/10.30574/wjarr.2023.18.1.0443 Song M.Y., and Yu Y., 2016, The main research fields and progress of livestock epigenetics, China Animal Husbandry & Veterinary Medicine, 43(10): 2701-2709. Tian D.M., Wang P., Tang B.X., Teng X.F., Li C.P., Liu X.N., Zou D., Song S.H., and Zhang Z., 2020, GWAS Atlas: a curated resource of genome-wide variant-trait associations in plants and animals, Nucleic Acids Research, 48(D1): D927-D932. https://doi.org/10.1093/nar/gkz828 PMid:31566222 PMCid:PMC6943065 Uffelmann E., Huang Q.Q., Munung N.S., De Vries J., Okada Y., Martin A.R., Martin H.C., Lappalainen T., and Posthuma D., 2021, Genome-wide association studies, Nature Reviews Methods Primers, 1(1): 59. https://doi.org/10.1038/s43586-021-00056-9 Walker L.R., Jobman E.E., Sutton K.M., Wittler J.N., Johnson R.K., and Ciobanu D.C., 2019, Genome-wide association analysis for porcine reproductive and respiratory syndrome virus susceptibility traits in two genetic populations of pigs, Journal of animal science, 97(8): 3253-3261. https://doi.org/10.1093/jas/skz184 PMid:31150538 PMCid:PMC6667235 Zhang H., Wang Z.P., Wang S.Z., and Li H., 2012, Progress of genome wide association study in domestic animals, Journal of animal science and biotechnology, 3(26): 1-10. https://doi.org/10.1186/2049-1891-3-26

RkJQdWJsaXNoZXIy MjQ4ODYzMg==