IJMS_2025v15n5

International Journal of Marine Science, 2025, Vol.15, No.5, 268-276 http://www.aquapublisher.com/index.php/ijms 275 Griffiths J.S., Smith K., and Whitehead A., 2025, Seascape genomics of red abalone: limited range‐wide population structure and evidence for local adaptation, Molecular Ecology, 34(4): e17650. https://doi.org/10.1111/mec.17650 Huang J., Luo X., Huang M., Liu G., You W., and Ke C., 2018, Identification and characteristics of muscle growth-related microRNA in the Pacific abalone Haliotis discus hannai, BMC Genomics, 19(1): 915. https://doi.org/10.1186/s12864-018-5347-9 Huang Z., Shen Y., Wang X., Xiao Q., Wang Y., Gan Y., Han Z., Li W., Luo X., Ke C., and You W., 2024, Transcriptome analysis of hybrid abalone (Haliotis discus hannai ♀ × H, fulgens ♂) reveals non-additive effects contributing to growth heterosis at early summer water temperature in Fujian, Aquaculture, 595: 741657. https://doi.org/10.1016/j.aquaculture.2024.741657 Kho K.H., Sukhan Z.P., Hossen S., Cho Y., Kim S.C., Sharker M.R., Jung H.J., and Nou I.S., 2021, Construction of a genetic linkage map based on SNP markers QTL mapping and detection of candidate genes of growth-related traits in Pacific abalone using genotyping-by-sequencing, Frontiers in Marine Science, 8: 713783. https://doi.org/10.3389/fmars.2021.713783 Kho K.H., Sukhan Z.P., Hossen S., Cho Y., Lee W., and Nou I., 2023, Age-dependent growth-related QTL variations in Pacific abalone Haliotis discus hannai, International Journal of Molecular Sciences, 24(17): 13388. https://doi.org/10.3390/ijms241713388 Link V., Schraiber J., Fan C., Dinh B., Mancuso N., Chiang C., and Edge M., 2023, Tree-based QTL mapping with expected local genetic relatedness matrices, American Journal of Human Genetics, 110(12): 2077-2091. https://doi.org/10.1016/j.ajhg.2023.10.017 Liu J., Peng W., Yu F., Lin W., Shen Y., Yu W., Gong S., Huang H., You W., Luo X., and Ke C., 2022, Development and validation of a 40-K multiple-SNP array for Pacific abalone (Haliotis discus hannai), Aquaculture, 558: 738393. https://doi.org/10.1016/j.aquaculture.2022.738393 Liu J., Yin Z., Zhou M., Yu W., You W., Chen Y., Luo X., and Ke C., 2023, Genetic parameters and genomic prediction for nutritional quality-related traits of Pacific abalone (Haliotis discus hannai), Aquaculture, 579: 740118. https://doi.org/10.1016/j.aquaculture.2023.740118 Li W.L., Zhang J.M., and Wang F., 2024, Comparative genomics of aquatic organisms: insights into biodiversity origins, International Journal of Aquaculture, 14(5): 241-248. https://doi.org/10.5376/ija.2024.14.0024 Mares-Mayagoitia J., Mejía-Ruíz P., La Cruz L., Micheli F., Cruz-Hernández P., De-Anda-Montañez J., Hyde J., Hernández-Saavedra N., De Jesús-Bonilla V., Vargas-Peralta C., Flores-Morales A., Pares-Sierra A., and Valenzuela-Quiñonez F., 2025, A seascape genomics perspective on restrictive genetic connectivity overcoming signals of local adaptations in the green abalone (Haliotis fulgens) of the California current system, Ecology and Evolution, 15(2): e70913. https://doi.org/10.1002/ece3.70913 Misztal I., and Gowane G., 2025, Estimation of heritabilities and genetic correlations by time slices using predictivity in large genomic models, Genetics, 230(2): iyaf066. https://doi.org/10.1093/genetics/iyaf066 Munyengwa N., Guen L., Bille H., Souza L., Clément-Demange A., Mournet P., Masson A., Soumahoro M., Kouassi D., and Cros D., 2021, Optimizing imputation of marker data from genotyping-by-sequencing (GBS) for genomic selection in non-model species: rubber tree (Hevea brasiliensis) as a case study, Genomics, 113(2): 655-668. https://doi.org/10.1016/j.ygeno.2021.01.012 Nguyen T.V., Alfaro A.C., Mundy C., Petersen J., and Ragg N.L.C., 2022, Omics research on abalone (Haliotis spp.): current state and perspectives, Aquaculture, 547: 737438. https://doi.org/10.1016/j.aquaculture.2021.737438 Sallam A.H., Manan F., Bajgain P., Martin M., Szinyei T., Conley E., Brown-Guedira G., Muehlbauer G., Anderson J., and Steffenson B., 2020, Genetic architecture of agronomic and quality traits in a nested association mapping population of spring wheat, The Plant Genome, 13(3): e20051. https://doi.org/10.1002/tpg2.20051 Sandoval‐Castillo J., Robinson N., Hart A., Strain L., and Beheregaray L., 2018, Seascape genomics reveals adaptive divergence in a connected and commercially important mollusc the greenlip abalone (Haliotis laevigata) along a longitudinal environmental gradient, Molecular Ecology, 27: 1603-1620. https://doi.org/10.1111/mec.14526 Su R., Lv J., Xue Y., Jiang S., Zhou L., Jiang L., Tan J., Shen Z., Zhong P., and Liu J., 2025, Genomic selection in pig breeding: comparative analysis of machine learning algorithms, Genetics Selection Evolution, 57(1): 13. https://doi.org/10.1186/s12711-025-00957-3 Swezey D., Boles S., Aquilino K., Stott H., Bush D., Whitehead A., Rogers‐Bennett L., Hill T., and Sanford E., 2020, Evolved differences in energy metabolism and growth dictate the impacts of ocean acidification on abalone aquaculture, Proceedings of the National Academy of Sciences of the United States of America, 117: 26513-26519. https://doi.org/10.1073/pnas.2006910117

RkJQdWJsaXNoZXIy MjQ4ODYzNA==