International Journal of Marine Science, 2025, Vol.15, No.5, 255-267 http://www.aquapublisher.com/index.php/ijms 266 Lidbury I.D.E.A., Scanlan D.J., Murphy A.R.J., Christie-Oleza J.A., Aguiló-Ferretjans M.M., Hitchcock A., and Daniell T., 2022, A widely distributed phosphate-insensitive phosphatase presents a route for rapid organophosphorus remineralization in the biosphere, Proceedings of the National Academy of Sciences of the United States of America, 119(5): e2118122119. https://doi.org/10.1073/pnas.2118122119 Liu J., Krom M., Ran X., Zang J., Liu J., Yao Q., and Yu Z., 2020, Sedimentary phosphorus cycling and budget in the seasonally hypoxic coastal area of Changjiang Estuary, The Science of the Total Environment, 713: 136389. https://doi.org/10.1016/j.scitotenv.2019.136389 Liu J., Yao Q., Mi T., Wei Q., Chen H., and Yu Z., 2022, Change of the long-term nitrogen and phosphorus in the Changjiang (Yangtze) River Estuary, Frontiers in Marine Science, 9: 885311. https://doi.org/10.3389/fmars.2022.885311 Ma J., Wang P., Ren L., Wang X., and Paerl H.W., 2019, Using alkaline phosphatase activity as a supplemental index to optimize predicting algal blooms in phosphorus-deficient lakes: a case study of Lake Taihu China, Ecological Indicators, 103: 698-712. https://doi.org/10.1016/J.ECOLIND.2019.04.043 Mackey K.R.M., Kavanaugh M.T., Wang F., Chen Y., Liu F., Glover D.M., Chien C.T., and Paytan A., 2017, Atmospheric and fluvial nutrients fuel algal blooms in the East China Sea, Frontiers in Marine Science, 4: 2. https://doi.org/10.3389/fmars.2017.00002 Maslukah L., Wirasatriya A., Yusuf M., Sari R., Salma U., and Zainuri M., 2021, Distribution of phosphorus fraction in surface sediments of the Jobokuto Bay Jepara, Molekul, 16(2): 100-109. Maßmig M., and Engel A., 2021, Dissolved organic matter in the upwelling system off peru: imprints of bacterial activity and water mass characteristics, Journal of Geophysical Research: Biogeosciences, 126(6): e2020JG006048. https://doi.org/10.1029/2020JG006048 McLaughlin K., Sohm J.A., Cutter G.A., Lomas M.W., and Paytan A., 2013, Phosphorus cycling in the Sargasso Sea: investigation using the oxygen isotopic composition of phosphate enzyme‐labeled fluorescence and turnover times, Global Biogeochemical Cycles, 27(2): 375-387. https://doi.org/10.1002/gbc.20037 Niemeyer D., Kemena T., Meissner K., and Oschlies A., 2016, A model study of warming-induced phosphorus–oxygen feedbacks in open-ocean oxygen minimum zones on millennial timescales, Earth System Dynamics Discussions, 8: 357-367. https://doi.org/10.5194/ESD-8-357-2017 Popendorf K., and Duhamel S., 2015, Variable phosphorus uptake rates and allocation across microbial groups in the oligotrophic gulf of Mexico, Environmental Microbiology, 17(10): 3992-4006. https://doi.org/10.1111/1462-2920.12932 Rasmussen B., Muhling J.A., Suvorova A., and Fischer W.W., 2021, Apatite nanoparticles in 3.46~2.46 Ga iron formations: evidence for phosphorus-rich hydrothermal plumes on early Earth, Geology, 49(6): 647-651. https://doi.org/10.1130/G48374.1 Redoglio A., Radtke K., and Sperfeld E., 2022, How nitrogen and phosphorus supply to nutrient‐limited autotroph communities affects herbivore growth: testing stoichiometric and co‐limitation theory across trophic levels, Oikos, 2022(9): e09052. https://doi.org/10.1111/oik.09052 Sai T., and Kakegawa T., 2019, Geochemical studies for seawater/rock interaction recorded on the submarine lava flows of 12 Ma in the Hokuroku district in Akita Japan and their implication to phosphorus cycle on the modern ocean floor, Japan Geoscience Union, 10(6): 621-641. Sebastián M., Smith A., González J., Fredricks H., Van Mooy B., Koblížek M., Brandsma J., Koster G., Mestre M., Mostajir B., Pitta P., Postle A., Sánchez P., Gasol J., Scanlan D., and Chen Y., 2015, Lipid remodelling is a widespread strategy in marine heterotrophic bacteria upon phosphorus deficiency, The ISME Journal, 10: 968-978. https://doi.org/10.1038/ismej.2015.172 Shen A., Liu H., Xin Q., Hu Q., Wang X., and Chen J., 2022, Responses of marine diatom–dinoflagellate interspecific competition to different phosphorus sources, Journal of Marine Science and Engineering, 10(12): 1972. https://doi.org/10.3390/jmse10121972 Sosa O., Repeta D., Delong E., Ashkezari M., and Karl D., 2019, Phosphate‐limited ocean regions select for bacterial populations enriched in the carbon–phosphorus lyase pathway for phosphonate degradation, Environmental Microbiology, 21: 2402-2414. https://doi.org/10.1111/1462-2920.14628 Van Wambeke F., Taillandier V., De Madron D., Conan P., Pujo-Pay M., Psarra S., Rabouille S., Baumas C., and Pulido-Villena E., 2024, Mesoscale variability of phosphorus stocks hydrological and biological processes in the mixed layer in the Eastern Mediterranean Sea in autumn and during an unusually dense winter phytoplankton bloom, Deep Sea Research Part I: Oceanographic Research Papers, 209: 104348. https://doi.org/10.1016/j.dsr.2024.104348 Wallmann K., 2010, Phosphorus imbalance in the global ocean, Global Biogeochemical Cycles, 24: 4. https://doi.org/10.1029/2009GB003643 Wang Q., Zhang C., Jin H., Chen Y., Yao X., and Gao H., 2022, Effect of anthropogenic aerosol addition on phytoplankton growth in coastal waters: role of enhanced phosphorus bioavailability, Frontiers in Microbiology, 13: 915255. https://doi.org/10.3389/fmicb.2022.915255
RkJQdWJsaXNoZXIy MjQ4ODYzNA==