International Journal of Marine Science, 2025, Vol.15, No.5, 233-244 http://www.aquapublisher.com/index.php/ijms 243 Jiang G., Zhou J., Cheng G., Meng L., Chi Y., Xu C., and Li Q., 2022, Examination of survival physiological parameters and immune response in relation to the thermo-resistant heterosis of hybrid oysters derived fromCrassostrea gigas and Cangulata, Aquaculture, 559: 738454. https://doi.org/10.1016/j.aquaculture.2022.738454 Jiao Z., Tian Y., Hu B., Li Q., and Liu S., 2021, Genome structural variation landscape and its selection signatures in the fast-growing strains of the Pacific oyster Crassostrea gigas, Marine Biotechnology, 23: 736-748. https://doi.org/10.1007/s10126-021-10060-5 McElroy K.E., Masonbrink R., Chudalayandi S., Severin A.J., Serb J.M., 2024, Chromosome-level genome assembly of the disco clam Ctenoides ales a first for the bivalve order Limida, bioRxiv, 2024: 03.01.583045. https://doi.org/10.1101/2024.03.01.583045 Li A., Dai H., Guo X., Zhang Z., Zhang K., Wang C., Wang W., Chen H., Li X., Zheng H., Zhang G., and Li L., 2021, Genome of the estuarine oyster provides insights into climate impact and adaptive plasticity, Communications Biology, 4(1): 1287. https://doi.org/10.1038/s42003-021-02823-6 Li Y., Mokrani A., Fu H., Shi C., Li Q., and Liu S., 2023, Development of nanopore sequencing-based full-length transcriptome database toward functional genome annotation of the Pacific oyster Crassostrea gigas, Genomics, 115(5): 110697. https://doi.org/10.1016/j.ygeno.2023.110697 Liu Y., Li L., Huang B., Wang W., and Zhang G., 2019, RNAi based transcriptome suggests genes potentially regulated by HSF1 in the Pacific oyster Crassostrea gigas under thermal stress, BMC Genomics, 20(1): 639. https://doi.org/10.1186/s12864-019-6003-8 Lu J., Yao T., Fu S., and Ye L., 2024, Metabolomic and microbiomic resilience of Hong Kong oysters to dual stressors: zinc oxide nanoparticles and low salinity, Chemosphere, 368: 143722. https://doi.org/10.1016/j.chemosphere.2024.143722 Modak T.H., Literman R., Puritz J.B., Johnson K.M., Roberts E.M., Proestou D., Guo X., Gómez-Chiarri M., and Schwartz R., 2021, Extensive genome-wide duplications in the eastern oyster (Crassostrea virginica), Philosophical Transactions of the Royal Society B, 376(1825): 20200164. https://doi.org/10.1098/rstb.2020.0164 Pettersson M., 2019, Structural genomic variation in human disease, Diss. Karolinska Institutet (Sweden), 2019. Qi H., Cong R., Wang Y., Li L., and Zhang G., 2022, Construction and analysis of the chromosome-level haplotype-resolved genomes of two Crassostrea oyster congeners: Crassostrea angulata and Crassostrea gigas, GigaScience, 12: giad077. https://doi.org/10.1093/gigascience/giad077 Qi H., Li L., and Zhang G., 2021, Construction of a chromosome‐level genome and variation map for the Pacific oyster Crassostrea gigas, Molecular Ecology Resources, 21(5): 1670-1685. https://doi.org/10.1111/1755-0998.13368 Quan C., Li Y., Wang Y., Ping J., Lu Y., and Zhou G., 2020, Characterization of structural variation in Tibetans reveals new evidence of high-altitude adaptation and introgression, Genome Biology, 22(1): 159. https://doi.org/10.1186/s13059-021-02382-3 Romagnoli S., Bartalucci N., and Vannucchi A.M., 2023, Resolving complex structural variants via nanopore sequencing, Frontiers in Genetics, 14: 1213917. https://doi.org/10.3389/fgene.2023.1213917 She Z., Peng Y., Jia Z., Kang Z., and Yu D., 2022, Molecular mechanisms affecting the difference in salinity adaptability between juvenile and adult Hong Kong oysters, Aquaculture Reports, 24: 101171. https://doi.org/10.1016/j.aqrep.2022.101171 Sun C.M., and Mai R.D., 2025, Origin and evolutionary history of oysters based on comparative phylogenomics and fossil evidence, Bioscience Methods, 16(4): 183-191. https://doi.org/10.5376/bm.2025.16.0017 Takeuchi T., Koyanagi R., and Gyoja F., 2016, Bivalve-specific gene expansion in the pearl oyster genome: implications of adaptation to a sessile lifestyle, Zoological Letters, 2(1): 3. https://doi.org/10.1186/s40851-016-0039-2 Tunjić-Cvitanić M., García-Souto D., Pasantes J., and Šatović-Vukšić E., 2024, Dominance of transposable element-related satDNAs results in great complexity of “satDNA library” and invokes the extension towards “repetitive DNA library”, Marine Life Science and Technology, 6: 236-251. https://doi.org/10.1007/s42995-024-00218-0 Wang C., Jiang Z., Du M., Li Q., Cong R., Wang W., Zhang G., and Li L., 2023, Comparative chromatin dynamics reveal differential thermal tolerance mechanisms between two congeneric oyster species, Aquaculture, 579: 740177. https://doi.org/10.1016/j.aquaculture.2023.740177 Wang C., Li A., Cong R., Qi H., Wang W., Zhang G., and Li L., 2023, Cis- and trans-variations of stearoyl-coa desaturase provide new insights into the mechanisms of diverged pattern of phenotypic plasticity for temperature adaptation in two congeneric oyster species, Molecular Biology and Evolution, 40(2): msad015. https://doi.org/10.1093/molbev/msad015 Wang G.L., and Mai R.D., 2025, Epigenetic regulation of growth and stress response in oysters, International Journal of Aquaculture, 15(4): 197-207. https://doi.org/10.5376/ija.2025.15.0019
RkJQdWJsaXNoZXIy MjQ4ODYzNA==