IJMS_2025v15n4

International Journal of Marine Science, 2025, Vol.15, No.4, 199-208 http://www.aquapublisher.com/index.php/ijms 208 Wolfe K., Vidal-Ramirez F., Dove S., Deaker D., and Byrne M., 2018, Altered sediment biota and lagoon habitat carbonate dynamics due to sea cucumber bioturbation in a high‐pCO2 environment, Global Change Biology, 24: 465-480. https://doi.org/10.1111/gcb.13826 Wu H., Li D., Zhu B., Cheng J., Sun J., Wang F., Yang Y., Song Y., and Yu C., 2013, Purification and characterization of alkaline phosphatase from the gut of sea cucumber Stichopus japonicus, Fisheries Science, 79: 477-485. https://doi.org/10.1007/s12562-013-0613-x Wu J.N., Xu X.Y., and Wu L.M., 2024, The physiological and ecological effects between ocean acidification and coral reefs, International Journal of Marine Science, 14(1): 14-20. https://doi.org/10.5376/ijms.2024.14.0003 Yuan X., McCoy S.J., Du Y., Widdicombe S., and Hall‐Spencer J.M., 2018, Physiological and behavioral plasticity of the sea cucumber Holothuria forskali (Echinodermata Holothuroidea) to acidified seawater, Frontiers in Physiology, 9: 1339. https://doi.org/10.3389/fphys.2018.01339 Yuan X., Shao S., Yang X., Yang D., Xu Q., Zong H., and Liu S., 2016, Bioenergetic trade-offs in the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea) in response to CO2-driven ocean acidification, Environmental Science and Pollution Research, 23: 8453-8461. https://doi.org/10.1007/s11356-016-6071-0 Zamora L., and Jeffs A., 2015, Macronutrient selection absorption and energy budget of juveniles of the Australasian sea cucumber Australostichopus mollis feeding on mussel biodeposits at different temperatures, Aquaculture Nutrition, 21: 162-172. https://doi.org/10.1111/ANU.12144

RkJQdWJsaXNoZXIy MjQ4ODYzNA==