International Journal of Marine Science, 2025, Vol.15, No.4, 179-185 http://www.aquapublisher.com/index.php/ijms 185 Li W.L., Zhang J.M., and Wang F., 2024b, Comparative genomics of aquatic organisms: insights into biodiversity origins, International Journal of Aquaculture, 14(5): 241-248. https://doi.org/10.5376/ija.2024.14.0024 Liu H., and Huang S.Q., 2024, The role of immune function in longevity and adaptation in vertebrates, International Journal of Molecular Zoology, 14(4): 197-210. https://doi.org/10.5376/ijmz.2024.14.0018 Mao J.X., Tian Y., Liu Q., Li D.Y., Ge X.F., Wang X.B., and Hao Z.L., 2024, Revealing genetic diversity population structure and selection signatures of the Pacific oyster in Dalian by whole-genome resequencing, Frontiers in Ecology and Evolution, 11: 1337980. https://doi.org/10.3389/fevo.2023.1337980 Mrowicki R., and Uhl R., 2024, The genome sequence of the Pacific oyster Magallana gigas (Thunberg 1793), Wellcome Open Research, 9: 284. https://doi.org/10.12688/wellcomeopenres.22255.2 Parker L., Scanes E., O'Connor W., Dove M., Elizur A., Pörtner H., and Ross P., 2023, Resilience against the impacts of climate change in an ecologically and economically significant native oyster, Marine Pollution Bulletin, 198: 115788. https://doi.org/10.1016/j.marpolbul.2023.115788 Powell D., Subramanian S., Suwansa-Ard S., Zhao M., O'Connor W., Raftos D., and Elizur A., 2018, The genome of the oyster Saccostrea offers insight into the environmental resilience of bivalves, DNA Research, 25: 655-665. https://doi.org/10.1093/dnares/dsy032 Qi H.G., Li L., and Zhang G.F., 2021, Construction of a chromosome‐level genome and variation map for the Pacific oyster Crassostrea gigas, Molecular Ecology Resources, 21(5): 1670-1685. https://doi.org/10.1111/1755-0998.13368 She Z.C., Li L., Meng J., Jia Z., Que H.Y., and Zhang G.F., 2018, Population resequencing reveals candidate genes associated with salinity adaptation of the Pacific oyster Crassostrea gigas, Scientific Reports, 8(1): 8683. https://doi.org/10.1038/s41598-018-26953-w Sullivan M., and Proestou D., 2021, Survival and transcriptomic responses to different Perkinsus marinus exposure methods in an Eastern oyster family, Aquaculture, 542: 736831. https://doi.org/10.1016/J.AQUACULTURE.2021.736831 Wang X., Li A., Wang W., Que H., Zhang G., and Li L., 2020, DNA methylation mediates differentiation in thermal responses of Pacific oyster (Crassostrea gigas) derived from different tidal levels, Heredity, 126: 10-22. https://doi.org/10.1038/s41437-020-0351-7 Xu L., Li Q., Yu H., and Kong L.F., 2017, Estimates of heritability for growth and shell color traits and their genetic correlations in the black shell strain of Pacific oyster Crassostrea gigas, Marine Biotechnology, 19(5): 421-429. https://doi.org/10.1007/s10126-017-9772-6 Zapata-Restrepio L.M., Hauton C., Hudson M.D., Williams I.D., and Hauton D., 2023, Toxicity of tributyltin to the European flat oyster Ostrea edulis: metabolomic responses indicate impacts to energy metabolism biochemical composition and reproductive maturation, PLoS One, 18(2): e0280777. https://doi.org/10.1371/journal.pone.0280777 Zhang G., Fang X., Guo X., Li L., Luo R., Wang Q., Steinberg C., Wang H., Li N., Qian L., Zhang G., Li Y., Yang H., Liu X., Wang J., Yin Y., and Wang J., 2012, The oyster genome reveals stress adaptation and complexity of shell formation, Nature, 490: 49-54. https://doi.org/10.1038/nature11413 Zhang G., Li L., Meng J., Qi H., Qu T., Xu F., and Zhang L., 2016, Molecular basis for adaptation of oysters to stressful marine intertidal environments, Annual Review of Animal Biosciences, 4: 357-381. https://doi.org/10.1146/annurev-animal-022114-110903 Zhang K.X., Li A., Qi H.G., Yang Q., Du M.Y., Wang X.G., Zhang Z.Y., Wang C.G., Wang W., Zhang G.F., and Li L., 2022, The development of a 30 K SNP genotyping tool targeting genomic regions of temperature and salinity adaptation in estuarine oyster, Aquaculture, 566: 739168. https://doi.org/10.1016/j.aquaculture.2022.739168
RkJQdWJsaXNoZXIy MjQ4ODYzNA==