International Journal of Marine Science, 2025, Vol.15, No.3, 118-129 http://www.aquapublisher.com/index.php/ijms 128 Chen X., Li S., Zhao J., and YaoM., 2024, Passive eDNA sampling facilitates biodiversity monitoring and rare species detection, Environment International, 187: 108706. https://doi.org/10.1016/j.envint.2024.108706. Douglas K.E., Shea P., Porzecanski A.L., and Naro-Maciel E., 2020, What’s in the water, Using environmental DNA for marine monitoring and planning, Lessons in Conservation, 10: 29-48. https://doi.org/10.5531/cbc.linc.10.1.3 Dugal L., Thomas L., Meenakshisundaram A., Simpson T., Lines R., Colquhoun J., Jarman S., and Meekan M., 2023, Distinct coral reef habitat communities characterized by environmental DNA metabarcoding, Coral Reefs, 42(1): 17-30. https://doi.org/10.1007/s00338-022-02301-3 Friedlander A., Aeby G., and Brainard R., 2022, The state of coral reef ecosystems of the main Hawaiian Islands, The State of Coral Reef Ecosystems of The United States and Pacific Freely Associated States, 17: 222-269. Gold Z., Sprague J., Kushner D.J., Zerecero Marin E., Barber P.H., 2021, eDNA metabarcoding as a biomonitoring tool for marine protected areas, PLoS ONE, 16(2): e0238557. https://doi.org/10.1371/journal.pone.0238557 Handley L.L., Blackwell T., Broadhurst H.A., Clark K., Davison P.I., England J., Mariani S., Mcdevitt A., Pillay K., Read D., Walsh K., Nisbet A., and Creer S., 2022, UK DNA working group eDNA week, Environmental DNA, 5(1): 18-24. https://doi.org/10.1002/edn3.364. He W., Xu D., Liang Y., Ren L., and Fang D., 2022, Using eDNA to assess the fish diversity and spatial characteristics in the Changjiang River-Shijiu Lake connected system, Ecological Indicators, 139: 108968. https://doi.org/10.1016/j.ecolind.2022.108968 Hinlo R., Gleeson D., Lintermans M., and Furlan E., 2017, Methods to maximise recovery of environmental DNA from water samples, PloS ONE, 12(6): e0179251. https://doi.org/10.1371/journal.pone.0179251 Huang L., McWilliam M., Liu C., Yu X., Jiang L., Zhang C., Luo Y., Yang J., Yuan X., Lian J., Huang H., 2024, Loss of coral trait diversity and impacts on reef fish assemblages on recovering reefs, Ecol Evol, 14(11): e70510. https://doi.org/10.1002/ece3.70510 Jaquier M., Albouy C., Bach W., Waldock C., Marques V., Maire E., Juhel J.B., Andrello M., Valentini A., Manel S., Dejean T., Mouillot D., and Pellissier L., 2024, Environmental DNA recovers fish composition turnover of the coral reefs of West Indian Ocean Islands, Ecol Evol, 14(5): e11337. https://doi.org/10.1002/ece3.11337 Jo H., Kim D.K., Park K., and Kwak I.S., 2019, Discrimination of spatial distribution of aquatic organisms in a coastal ecosystem using eDNA, Applied Sciences, 9(17): 3450. https://doi.org/10.3390/APP9173450. Li M.M., 2024, Comparative genomics of fish: insights into evolutionary processes, International Journal of Molecular Zoology, 14(4): 222-232. https://doi.org/10.5376/ijmz.2024.14.0020 Malik M.D.A., Ambariyanto A., Hartati R., Nursalim N., Kholilah N., Kurniasih E.M., Anggoro A.W., Prasetia R., Syamsyuni Y., Muh F., Cahyani N.K.D., 2025, eDNA uncovers hidden fish diversity in the coral reef ecosystems of Karimunjawa National Park, Indonesia, Regional Studies in Marine Science, 81: 103945. https://doi.org/10.1016/j.rsma.2024.103945 Mauvisseau Q., Harper L.R., Sander M., Hanner R.H., Kleyer H., and Deiner K., 2022, The multiple states of environmental DNA and what is known about their persistence in aquatic environments, Environ Sci Technol, 56(9): 5322-5333. https://doi.org/10.1021/acs.est.1c07638 McCartin L.J., Vohsen S.A., Ambrose S.W., Layden M., McFadden C.S., Cordes E.E., McDermott J.M., and Herrera S., 2022, Temperature controls eDNA persistence across physicochemical conditions in seawater, Environ Sci Technol, 56(12):8629-8639. https://doi.org/10.1021/acs.est.2c01672 Miya M., Sato Y., Fukunaga T., Sado T., Poulsen J.Y., Sato K., Minamoto T., Yamamoto S., Yamanaka H., Araki H., Kondoh M., and Iwasaki W., 2015, MiFish., a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species, Royal Society open science, 2(7): 150088. https://doi.org/10.1098/rsos.150088 Muenzel D., Bani A., De Brauwer M., and Beger M., 2024, Combining environmental DNA and visual surveys can inform conservation planning for coral reefs, Proceedings of the National Academy of Sciences, 121(17): e2307214121. https://doi.org/10.1073/pnas.2307214121 Oka S.I., Doi H., Miyamoto K., Hanahara N., Sado T., and Miya M., 2021, Environmental DNA metabarcoding for biodiversity monitoring of a highly diverse tropical fish community in a coral reef lagoon: estimation of species richness and detection of habitat segregation, Environmental DNA, 3: 55-69. https://doi.org/10.1002/edn3.132 Sahu A., Singh M., Amin A., Malik M.M., Qadri S.N., Abubakr A., Teja S.S., Ahmad Dar S., and Ahmad I., 2025, A systematic review on environmental DNA (eDNA) science: an eco-friendly survey method for conservation and restoration of fragile ecosystems, Ecological Indicators, 173: 113441. https://doi.org/10.1016/j.ecolind.2025.113441
RkJQdWJsaXNoZXIy MjQ4ODYzNA==