IJMS2025v15n2

International Journal of Marine Science, 2025, Vol.15, No.2, 107-117 http://www.aquapublisher.com/index.php/ijms 116 Gordillo F.J.L., 2012, Environment and algal nutrition, Ecological Studies, 2012: 67-86. https://doi.org/10.1007/978-3-642-28451-9_4 Grisdale C., and Archibald J., 2016, Secondary and tertiary endosymbiosis, Advances in Botanical Research, Academic Press, 64: 87-118. https://doi.org/10.1016/B978-0-12-809633-8.13107-3 Ho S.Y.W., and Duchêne S., 2014, Molecular‐clock methods for estimating evolutionary rates and timescales, Molecular Ecology, 23(24): 5947-5965. https://doi.org/10.1111/mec.12953 Il’ichev V., and Il’icheva O., 2021, Hypotheses concerning algal adaptation to periodic environmental factors, Biophysics, 66: 297-303. https://doi.org/10.1134/S0006350921020093 Jia S.G., Wang X.M., Qian H., Li T.Y., Sun J., Wang L., Yu J., Li X.G., Yin J.L., Liu T., and Wu S.X., 2014, Phylogenomic analysis of transcriptomic sequences of mitochondria and chloroplasts for marine red algae (Rhodophyta) in China, Acta Oceanologica Sinica, 33(2): 86-93. https://doi.org/10.1007/s13131-014-0444-3 Keeling P., 2013, The number speed and impact of plastid endosymbioses in eukaryotic evolution, Annual Review of Plant Biology, 64: 583-607. https://doi.org/10.1146/annurev-arplant-050312-120144 Koushalya S., Vishwakarma R., and Malik A., 2021, Unraveling the diversity of algae and its biomacromolecules, Microbial and Natural Macromolecules, Academic Press, 2021: 179-204. https://doi.org/10.1016/B978-0-12-820084-1.00008-9 Kudela R.M., Howard M.D.A., Monismith S., and Paerl H., 2023, Status trends and drivers of harmful algal blooms along the freshwater-to-marine gradient in the san francisco bay–delta system, San Francisco Estuary and Watershed Science, 20(4). https://doi.org/10.15447/sfews.2023v20iss4art6 Landi S., and Esposito S., 2020, Bioinformatic characterization of sulfotransferase provides new insights for the exploitation of sulfated polysaccharides in caulerpa, International Journal of Molecular Sciences, 21(18): 6681. https://doi.org/10.3390/ijms21186681 Larkum A.W., 2016, Photosynthesis and light harvesting in algae, The Physiology of Microalgae, 2016: 67-87. https://doi.org/10.1007/978-3-319-24945-2_3 Lemieux C., Vincent A.T., Labarre A., Otis C., and Turmel M., 2015, Chloroplast phylogenomic analysis of chlorophyte green algae identifies a novel lineage sister to the Sphaeropleales (Chlorophyceae), BMC Evolutionary Biology, 15(1): 264. https://doi.org/10.1186/s12862-015-0544-5 Li M.M., 2024, Efficiency and condition optimization of biohydrogen production using marine algae, Journal of Energy Bioscience, 15(5): 301-313. Mekvipad N., and Satjarak A., 2019, Evolution of organellar genes of chlorophyte algae: relevance to phylogenetic inference, PLoS ONE, 14. https://doi.org/10.1371/journal.pone.0216608 Pietluch F., Mackiewicz P., Ludwig K., and Gagat P., 2024, A new model and dating for the evolution of complex plastids of red alga origin, Genome Biology and Evolution, 16(9): evae192. https://doi.org/10.1093/gbe/evae192 Ponce-Toledo R.I., Moreira D., López‐García P., and Deschamps P., 2018, Secondary plastids of euglenids and chlorarachniophytes function with a mix of genes of red and green algal ancestry, Molecular Biology and Evolution, 35(9): 2198-2204. https://doi.org/10.1093/molbev/msy121 Raimundo R., Guimarães P., and Evans D., 2018, Adaptive networks for restoration ecology, Trends in Ecology and Evolution, 33(9): 664-675. https://doi.org/10.1016/j.tree.2018.06.002 Stadnichuk I.N., and Kusnetsov V.V., 2023, Phycobilisomes and Phycobiliproteins in the pigment apparatus of oxygenic photosynthetics: from cyanobacteria to tertiary endosymbiosis, International Journal of Molecular Sciences, 24(3): 2290. https://doi.org/10.3390/ijms24032290 Stiller J.W., Schreiber J., Yue J., Guo H., Ding Q., and Huang J., 2014, The evolution of photosynthesis in chromist algae through serial endosymbioses, Nature Communications, 5(1): 5764. https://doi.org/10.1038/ncomms6764 Strassert J.F.H., Irisarri I., Williams T.A., and Burki F., 2021, A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids, Nature Communications, 12(1): 1879. https://doi.org/10.1038/s41467-021-22044-z Sun L.H., Fang L., Zhang Z.H., Chang X., Penny D., and Zhong B.J., 2016, Chloroplast phylogenomic inference of green algae relationships, Scientific Reports, 6(1): 20528. https://doi.org/10.1038/srep20528. Xue H., 2022, Phylogenetics and its application in biodiversity conservation, Molecular Genetics and Genomics Tools in Biodiversity Conservation, 2022: 1-16. https://doi.org/10.1007/978-981-16-6005-4_1 Yamada N., Sym S., and Horiguchi T., 2017, Identification of highly divergent diatom-derived chloroplasts in dinoflagellates including a description of Durinskia kwazulunatalensis sp. nov., Peridiniales Dinophyceae, Molecular Biology and Evolution, 34: 1335-1351. https://doi.org/10.1093/molbev/msx054

RkJQdWJsaXNoZXIy MjQ4ODYzNA==