IJMS_2025v15n1

International Journal of Marine Science, 2025, Vol.15, No.1, 15-27 http://www.aquapublisher.com/index.php/ijms 27 Scanes E., Parker L.M., Seymour J.R., Siboni N., King W.L., Danckert N.P., Wegner K.M., Dove M.C., O'Connor W., and Ross P., 2021, Climate change alters the haemolymph microbiome of oysters, Marine Pollution Bulletin, 164: 111991. https://doi.org/10.1016/j.marpolbul.2021.111991 Silliman K., 2018, Population structure genetic connectivity and adaptation in the Olympia oyster (Ostrea lurida) along the west coast of North America, Evolutionary Applications, 12: 923-939. https://doi.org/10.1111/eva.12766 Stange M., Sánchez‐Villagra M., Salzburger W., and Matschiner M., 2018, Bayesian divergence-time estimation with genome-wide single-nucleotide polymorphism data of sea catfishes (Ariidae) supports miocene closure of the Panamanian Isthmus, Systematic Biology, 67(4): 681-699. https://doi.org/10.1093/sysbio/syy006 Takeuchi T., Masaoka T., Aoki H., Koyanagi R., Fujie M., and Satoh N., 2020, Divergent northern and southern populations and demographic history of the pearl oyster in the western Pacific revealed with genomic SNPs, Evolutionary Applications, 13(4): 837-853. https://doi.org/10.1111/eva.12905 Thongda W., Zhao H., Zhang D., Jescovitch L.N., Liu M., Guo X., Schrandt M., Powers S.P., and Peatman E., 2018, Development of SNP panels as a new tool to assess the genetic diversity population structure and parentage analysis of the eastern oyster (Crassostrea virginica), Marine Biotechnology, 20: 385-395. https://doi.org/10.1007/s10126-018-9803-y Zhao Z.X., Chen G.P., and Zhang L.H., 2024, Epigenetic regulation in algae: implications for growth development and stress response, International Journal of Aquaculture, 14(5): 257-265. https://doi.org/10.5376/ija.2024.14.0026

RkJQdWJsaXNoZXIy MjQ4ODYzNA==