IJMS_2024v14n5

International Journal of Marine Science, 2024, Vol.14, No.5, 332-340 http://www.aquapublisher.com/index.php/ijms 339 Kallakuri S., Yu J., Li J., Li Y., Weinstein B., Nicoli S., and Sun Z., 2015, Endothelial cilia are essential for developmental vascular integrity in zebrafish, Journal of the American Society of Nephrology : JASN, 26(4): 864-875. https://doi.org/10.1681/ASN.2013121314 Lee M.S., Han H.J., Choi T.I., Lee K.H., Baasankhuu A.T., Kim H., and Kim C.H., 2023, IFT46 gene promoter-driven ciliopathy disease model in zebrafish, Frontiers in Cell and Developmental Biology, 11: 1200599. https://doi.org/10.3389/fcell.2023.1200599 Lee M., Hwang K., Oh H., Ji-ae K., Kim H., Cho H., Lee J., Ko J., Choi J., Jeong Y., You K., Kim J., Park D., Nam K., Aizawa S., Kiyonari H., Shioi G., Park J., Zhou W., Kim N., and Kim C., 2015, IFT46 plays an essential role in cilia development, Developmental Biology, 400(2): 248-257. https://doi.org/10.1016/j.ydbio.2015.02.009 Leventea E., Hazime K., Zhao C., and Malicki J., 2016, Analysis of cilia structure and function in zebrafish, Methods in Cell Biology, 133: 179-227. https://doi.org/10.1016/bs.mcb.2016.04.016 Liu J.J., Xie H.B., Wu M.F., Hu Y.D., and Kang Y.S., 2023, The role of cilia during organogenesis in zebrafish, Open Biology, 13(12): 230228. https://doi.org/10.1098/rsob.230228 Lu H.R., Galeano M., Ott E., Kaeslin G., Kausalya P., Kramer C., Ortiz-Brüchle N., Hilger N., Metzis V., Metzis V., Hiersche M., Tay S., Tunningley R., Vij S., Courtney A., Whittle B., Wühl E., Vester U., Hartleben B., Neuber S., Frank V., Little M., Little M., Epting D., Papathanasiou P., Papathanasiou P., Perkins A., Wright G., Hunziker W., Gee H., Gee H., Otto E., Zerres K., Hildebrandt F., Roy S., Wicking C., Wicking C., Bergmann C., and Bergmann C., 2017, Mutations in DZIP1L which encodes a ciliary-transition-zone protein cause autosomal recessive polycystic kidney disease, Nature Genetics, 49: 1025-1034. https://doi.org/10.1038/ng.3871 Lu H., Toh M., Narasimhan V., Thamilselvam S., Choksi S., and Roy S., 2015, A function for the Joubert syndrome protein Arl13b in ciliary membrane extension and ciliary length regulation, Developmental Biology, 397(2): 225-236. https://doi.org/10.1016/j.ydbio.2014.11.009 Luo M., Lin Z., Zhu T., Jin M., Meng D., He R., Cao Z., Shen Y., Lu C., Cai R., Zhao Y., Wang X., Li H., Wu S., Zou X., Luo G., Cao L., Huang M., Jiao H., Gao H., Sui R., Zhao C., Ma X., and Cao M., 2021, Disrupted intraflagellar transport due to IFT74 variants causes Joubert syndrome, Genetics in Medicine, 23: 1041-1049. https://doi.org/10.1038/s41436-021-01106-z Ma M., 2020, Cilia and polycystic kidney disease, Seminars in Cell and Developmental Biology, 110: 139-148. https://doi.org/10.1016/j.semcdb.2020.05.003 Maerz L.D., Burkhalter M.D., Schilpp C., Wittekindt O.H., Frick M., and Philipp M., 2019, Pharmacological cholesterol depletion disturbs ciliogenesis and ciliary function in developing zebrafish, Communications Biology, 2(1): 31. https://doi.org/10.1038/s42003-018-0272-7 McGrew S., 2024 Redefining intercellular signaling: trafficking mechanism of the Wnt5b-Ror2 complex in zebrafish, International Journal of Aquaculture, 14(1): 37-39. https://doi.org/10.5376/ija.2024.14.0005 Molinari E., Ramsbottom S., Sammut V., Hughes F., and Sayer J., 2018, Using zebrafish to study the function of nephronophthisis and related ciliopathy genes, F1000Research, 2018: 7. https://doi.org/10.12688/f1000research.15511.2 Olson R.J., Hopp K., Wells H., Smith J.M., Furtado J., Constans M., Escobar D., Geurts A., Torres V., and Harris P., 2019, Synergistic genetic interactions between pkhd1 and pkd1 result in an ARPKD-like phenotype in murine models, Journal of the American Society of Nephrology : JASN, 30(11): 2113-2127. https://doi.org/10.1681/ASN.2019020150 Oralová V., Rosa J.T., Soenens M., Bek J.W., Willaert A., Witten P.E., and Huysseune A., 2019, Beyond the whole-mount phenotype: high-resolution imaging in fluorescence-based applications on zebrafish, Biology Open, 8(5): bio042374. https://doi.org/10.1242/bio.042374 Peralta M., Lopez L., Jeřábková K., Lucchesi T., Vitre B., Han D., Guillemot L., Dingare C., Sumara I., Mercader N., Lecaudey V., Delaval B., Meilhac S., and Vermot J., 2020, Intraflagellar transport complex b proteins regulate the hippo effector yap1 during cardiogenesis, Cell Reports, 32(3): 107932. https://doi.org/10.1016/j.celrep.2020.107932 Pinto A., Rasteiro M., Bota C., Pestana S., Sampaio P., Hogg C., Burgoyne T., and Lopes S., 2021, Zebrafish motile cilia as a model for primary ciliary dyskinesia, International Journal of Molecular Sciences, 22(16): 8361. https://doi.org/10.3390/ijms22168361 Rusterholz T., Hofmann C., and Bachmann-Gagescu R., 2022, Insights gained from zebrafish models for the ciliopathy joubert syndrome, Frontiers in Genetics, 13: 939527. https://doi.org/10.3389/fgene.2022.939527 Sassen W., Lehne F., Russo G., Wargenau S., Dübel S., and Köster R., 2017, Embryonic zebrafish primary cell culture for transfection and live cellular and subcellular imaging, Developmental Biology, 430(1): 18-31. https://doi.org/10.1016/j.ydbio.2017.07.014

RkJQdWJsaXNoZXIy MjQ4ODYzNA==