International Journal of Marine Science, 2024, Vol.14, No.5, 312-320 http://www.aquapublisher.com/index.php/ijms 319 Aromokeye D., Kulkarni A., Elvert M., Wegener G., Henkel S., Coffinet S., Eickhorst T., Oni O., Richter-Heitmann T., Schnakenberg A., Taubner H., Wunder L., Yin X., Zhu Q., Hinrichs K., Kasten S., and Friedrich M., 2020, Rates and microbial players of iron-driven anaerobic oxidation of methane in methanic marine sediments, Frontiers in Microbiology, 10: 3041. https://doi.org/10.3389/fmicb.2019.03041 Bornemann M., Bussmann I., Tichy L., Deutzmann J., Schink B., and Pester M., 2016, Methane release from sediment seeps to the atmosphere is counteracted by highly active Methylococcaceae in the water column of deep oligotrophic lake constance, FEMS Microbiology Ecology, 92(8): fiw123. https://doi.org/10.1093/femsec/fiw123 Chai F.G., Li L., Xue S., and Liu J.X., 2020, Auxiliary voltage enhanced microbial methane oxidation co-driven by nitrite and sulfate reduction, Chemosphere, 250: 126259. https://doi.org/10.1016/j.chemosphere.2020.126259 Chen T., 2024, Environmental microbial diversity and ecosystem health revealed by metagenomics, Molecular Microbiology Research, 14(1): 20-30. https://doi.org/10.5376/mmr.2024.14.0003 Conrad R., 2020, Importance of hydrogenotrophic aceticlastic and methylotrophic methanogenesis for methane production in terrestrial aquatic and other anoxic environments: a mini review, Pedosphere, 30: 25-39. https://doi.org/10.1016/s1002-0160(18)60052-9 Dean J.F., Middelburg J.J., Röckmann T., Aerts R., Blauw L.G., Egger M.S., Jetten M., Jong A.E., Meisel O.H., Rasigraf O., Slomp C., Zandt M., and Dolman A.J., 2018, Methane feedbacks to the global climate system in a warmer world, Reviews of Geophysics, 56(1): 207-250. https://doi.org/10.1002/2017RG000559 Guo X.P., Yang Y., Niu Z.X., Lu D.P., Zhu C.H., Feng J.N., Wu J.Y., Chen Y., Tou F.Y., Liu M., and Hou L.J., 2019, Characteristics of microbial community indicate anthropogenic impact on the sediments along the Yangtze estuary and its coastal area China, The Science of the Total Environment, 648: 306-314. https://doi.org/10.1016/j.scitotenv.2018.08.162 He Z.F., Xu S.Y., Zhao Y.H., and Pan X.L., 2019, Methane emissions from aqueous sediments are influenced by complex interactions among microbes and environmental factors: a modeling study, Water Research, 166: 115086. https://doi.org/10.1016/j.watres.2019.115086 Jing H.M., Wang R.N., Jiang Q.Y., Zhang Y., and Peng X.T., 2020, Anaerobic methane oxidation coupled to denitrification is an important potential methane sink in deep-sea cold seeps, The Science of the Total Environment, 748: 142459. https://doi.org/10.1016/J.SCITOTENV.2020.142459 Klasek S., Torres M.E., Bartlett D.H., Tyler M., Hong W.L., and Colwell F., 2019, Microbial communities from Arctic marine sediments respond slowly to methane addition during ex situ enrichments, Environmental Microbiology, 22(5): 1829-1846. https://doi.org/10.1111/1462-2920.14895 Kong Y., Lei H.Y., Cheng W.D., Wang B., Pan F.L., and Huang F.H., 2022, Shifting microbial communities perform anaerobic oxidation of methane and methanogenesis in sediments from the Shenhu area of northern south China sea during long-term incubations, Frontiers in Earth Science, 10: 1014976. https://doi.org/10.3389/feart.2022.1014976 Lavergne C., Aguilar-Muñoz P., Calle N., Thalasso F., Astorga-España M., Sepulveda‐Jauregui A., Martinez-Cruz K., Gandois L., Mansilla A., Chamy R., Barret M., and Cabrol L., 2021, Temperature differently affected methanogenic pathways and microbial communities in sub-Antarctic freshwater ecosystems, Environment International, 154: 106575. https://doi.org/10.1016/j.envint.2021.106575 Mai R.D., 2024, Mechanisms of adaptation in aquatic species: from phenotypic plasticity to genetic evolution, International Journal of Aquaculture, 14(3): 139-153. https://doi.org/10.5376/ija.2024.14.0015 Marlow J.J., Skennerton C.T., Li Z., Chourey K., Hettich R.L., Pan C.L., and Orphan V.J., 2016, Proteomic stable isotope probing reveals biosynthesis dynamics of slow growing methane based microbial communities, Frontiers in Microbiology, 7: 563. https://doi.org/10.3389/fmicb.2016.00563 Martinez-Cruz K., Leewis M.C., Herriott I.C., Sepulveda‐Jauregui A., Anthony K.W., Thalasso F., and Leigh M., 2017, Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments, The Science of the Total Environment, 607: 23-31. https://doi.org/10.1016/j.scitotenv.2017.06.187 Meister P., Liu B., Khalili A., Böttcher M., and Jørgensen B., 2019, Factors controlling the carbon isotope composition of dissolved inorganic carbon and methane in marine porewater: an evaluation by reaction-transport modelling, Journal of Marine Systems, 200: 103227. https://doi.org/10.1016/J.JMARSYS.2019.103227 Nie W.B., Ding J., Xie G.J., Tan X., Lu Y., Peng L., Liu B.F., Xing D.F., Yuan Z.G., and Ren N.Q., 2021, Simultaneous nitrate and sulfate dependent anaerobic oxidation of methane linking carbon nitrogen and sulfur cycles, Water Research, 194: 116928. https://doi.org/10.1016/j.watres.2021.116928 Nie W.B., Xie G.J., Tan X., Ding J., Lu Y., Chen Y., Yang C., He Q., Liu B.F., Xing D.F., and Ren N.Q., 2023, Microbial niche differentiation during nitrite-dependent anaerobic methane oxidation, Environmental Science and Technology, 57(17): 7029-7040. https://doi.org/10.1021/acs.est.2c08094 Qian L., Yu X., Zhou J., Gu H., Ding J., Peng Y., He Q., Tian Y., Liu J., Wang S., Wang C., Shu L., Yan Q., He J., Liu G., Tu Q., and He Z., 2022, MCycDB: A curated database for comprehensively profiling methane cycling processes of environmental microbiomes, Molecular Ecology Resources, 22: 1803-1823. https://doi.org/10.1111/1755-0998.13589
RkJQdWJsaXNoZXIy MjQ4ODYzNA==