IJMS_2024v14n5

International Journal of Marine Science, 2024, Vol.14, No.5, 304-311 http://www.aquapublisher.com/index.php/ijms 310 Cattano C., Agostini S., Harvey B., Wada S., Quattrocchi F., Turco G., Inaba K., Hall‐Spencer J., and Milazzo M., 2020, Changes in fish communities due to benthic habitat shifts under ocean acidification conditions, The Science of the Total Environment, 725: 138501. https://doi.org/10.1016/j.scitotenv.2020.138501 Chai F., Johnson K., Claustre H., Xing X., Wang Y., Boss E., Riser S., Fennel K., Schofield O., and Sutton A., 2020, Monitoring ocean biogeochemistry with autonomous platforms, Nature Reviews Earth and Environment, 1: 315-326. https://doi.org/10.1038/s43017-020-0053-y Claustre H., Johnson K.S., and Takeshita Y., 2020, Observing the global ocean with biogeochemical-argo, Annual Review of Marine Science, 12(1): 23-48. https://doi.org/10.1146/annurev-marine-010419-010956 Coll M., Steenbeek J., Pennino M.G., Buszowski J., Kaschner K., Lotze H.K., Rousseau Y., Tittensor D., Walters C., Watson R., and Christensen V., 2020, Advancing global ecological modeling capabilities to simulate future trajectories of change in marine ecosystems, Frontiers in Marine Science, 7: 567877. https://doi.org/10.3389/fmars.2020.567877 Dang H., and Chen C.T.A., 2017, Ecological energetic perspectives on responses of nitrogen-transforming chemolithoautotrophic microbiota to changes in the marine environment, Frontiers in Microbiology, 8: 1246. https://doi.org/10.3389/fmicb.2017.01246 Duhamel S., Diaz J., Adams J., Djaoudi K., Steck V., and Waggoner E., 2021, Phosphorus as an integral component of global marine biogeochemistry, Nature Geoscience, 14: 359-368. https://doi.org/10.1038/s41561-021-00755-8 Fennel K., Gehlen M., Brasseur P., Brown C.W., Ciavatta S., Cossarini G., Crise A., Edwards C.A., Ford D., Friedrichs M., Grégoire M., Jones E., Kim H., Lamouroux J., Murtugudde R., and Perruche C., 2019, Advancing marine biogeochemical and ecosystem reanalyses and forecasts as tools for monitoring and managing ecosystem health, Frontiers in Marine Science, 6: 89. https://doi.org/10.3389/fmars.2019.00089 Frade P.R., Glasl B., Matthews S.A., Mellin C., Serrão E.A., Wolfe K., Mumby P.J., Webster N.S., and Bourne D., 2020, Spatial patterns of microbial communities across surface waters of the great barrier reef, Communications Biology, 3(1): 442. https://doi.org/10.1038/s42003-020-01166-y Gamfeldt L., Lefcheck J., Byrnes J., Cardinale B., Duffy J., and Griffin J., 2015, Marine biodiversity and ecosystem functioning: what’s known and what’s next, Oikos, 124: 252-265. https://doi.org/10.1111/OIK.01549 Grabowski E.A., Letelier R., Laws E.M., and Karl D.A., 2019, Coupling carbon and energy fluxes in the north pacific subtropical gyre, Nature Communications, 10(1): 1895. https://doi.org/10.1038/s41467-019-09772-z Hochberg E.J., and Gierach M.M., 2021, Missing the reef for the corals: unexpected trends between coral reef condition and the environment at the ecosystem scale, Frontiers in Marine Science, 8: 727038. https://doi.org/10.3389/fmars.2021.727038 Hutchins D.A., and Fu F., 2017, Microorganisms and ocean global change, Nature Microbiology, 2(6): 1-11. https://doi.org/10.1038/nmicrobiol.2017.58 Hyun S., Mishra A., Follett C., Jonsson B., Kulk G., Forget G., Racault M., Jackson T., Dutkiewicz S., Müller C., and Bien J., 2021, Ocean mover’s distance: using optimal transport for analysing oceanographic data, Proceedings, Mathematical Physical and Engineering Sciences, 478(2262): 20210875. https://doi.org/10.1098/rspa.2021.0875 Ismail K.A., and Al-Shehhi M.R., 2023, Applications of biogeochemical models in different marine environments: a review, Frontiers in Environmental Science, 11: 1198856. https://doi.org/10.3389/fenvs.2023.1198856 Jönsson B.F., Follett C.L., Bien J., Dutkiewicz S., Hyun S., Kulk G.L., Forget G., Müller C., Racault M., Hill C., Jackson T., and Sathyendranath S., 2023, Using probability density functions to evaluate models (PDFEM v1.0) to compare a biogeochemical model with satellite-derived chlorophyll, Geoscientific Model Development, 16(16): 4639-4657. https://doi.org/10.5194/gmd-16-4639-2023 Kavanaugh M., Bell T., Catlett D., Cimino M., Doney S., Klajbor W., Messié M., Montes E., Karger F., Otis D., Santora J., Schroeder I., Trinanes J., and Siegel D., 2021, Satellite remote sensing and the marine biodiversity observation network: current science and future steps, Oceanography, 34(2): 62-79. https://doi.org/10.5670/oceanog.2021.215 Koenigstein S., Mark F., Gößling-Reisemann S., Reuter H., and Poertner H., 2016, Modelling climate change impacts on marine fish populations: process-based integration of ocean warming acidification and other environmental drivers, Fish and Fisheries, 17: 972-1004. https://doi.org/10.1111/FAF.12155 Nagelkerken I., and Connell S., 2015, Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions, Proceedings of the National Academy of Sciences, 112: 13272-13277. https://doi.org/10.1073/pnas.1510856112 Nessel M.P., Konnovitch T., Romero G.Q., and González A.L., 2021, Nitrogen and phosphorus enrichment cause declines in invertebrate populations: a global meta‐analysis, Biological Reviews, 96(6): 2617-2637. https://doi.org/10.1111/brv.12771

RkJQdWJsaXNoZXIy MjQ4ODYzNA==