IJMS_2024v14n4

International Journal of Marine Science, 2024, Vol.14, No.4, 266-274 http://www.aquapublisher.com/index.php/ijms 273 Acknowledgments I appreciate the feedback from two anonymous peer reviewers on the manuscript of this study. Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Bakker A., Herbers T., Smit P., Tissier M., and Ruessink B., 2015, Nonlinear infragravity–wave interactions on a gently sloping laboratory beach, Journal of Physical Oceanography, 45: 589-605. https://doi.org/10.1175/JPO-D-14-0186.1 Becherer J., Moum J., Colosi J., Lerczak J., and McSweeney J., 2020, Turbulence asymmetries in bottom boundary layer velocity pulses associated with onshore-propagating nonlinear internal waves, Journal of Physical Oceanography, 50(8): 2373-2391. https://doi.org/10.1175/jpo-d-19-0178.1 Bordois L., Auclair F., Paci A., Dossmann Y., and Nguyen C., 2017, Nonlinear processes generated by supercritical tidal flow in shallow straits, Physics of Fluids, 29: 066603. https://doi.org/10.1063/1.4986260 Capotondi A., Jacox M., Bowler C., Kavanaugh M., Lehodey P., Barrie D., Brodie S., Chaffron S., Cheng W., Dias D., Eveillard D., Guidi L., Iudicone D., Lovenduski N., Nye J., Ortiz I., Pirhalla D., Buil M., Saba V., Sheridan S., Siedlecki S., Subramanian A., Vargas C., Lorenzo E., Doney S., Hermann A., Joyce T., Merrifield M., Miller A., Not F., and Pesant S., 2019, Observational needs supporting marine ecosystems modeling and forecasting: from the global ocean to regional and coastal systems, Frontiers in Marine Science, 6: 623. https://doi.org/10.3389/fmars.2019.00623 Constantin A., and Ivanov R., 2019, Equatorial wave–current interactions, Communications in Mathematical Physics 370: 1-48. https://doi.org/10.1007/s00220-019-03483-8 Couchman M., Kops S., and Caulfield C., 2022, Mixing across stable density interfaces in forced stratified turbulence, Journal of Fluid Mechanics, 961: A20. https://doi.org/10.1017/jfm.2023.253 Crowe M., and Johnson E., 2020, The effects of vertical mixing on nonlinear Kelvin waves, Journal of Fluid Mechanics, 903: A22. https://doi.org/10.1017/jfm.2020.654 Desmars N., Hartmann M., Behrendt J., Hoffmann N., and Klein M., 2023, Nonlinear deterministic reconstruction and prediction of remotely measured ocean surface waves, Journal of Fluid Mechanics, 975: A8. https://doi.org/10.1017/jfm.2023.841 Dudley J., Genty G., Mussot A., Chabchoub A., and Dias F., 2019, Rogue waves and analogies in optics and oceanography, Nature Reviews Physics, 1(11): 675-689. https://doi.org/10.1038/s42254-019-0100-0 Eeltink D., Branger H., Luneau C., He Y., Chabchoub A., Kasparian J., Bremer T., and Sapsis T., 2022, Nonlinear wave evolution with data-driven breaking, Nature Communications, 13(1): 2343. https://doi.org/10.1038/s41467-022-30025-z Fan P., Jin J., Guo R., Li G., and Zhou G., 2023, The effects of wave-induced stokes drift and mixing induced by nonbreaking surface waves on the ocean in a climate system ocean model, Journal of Marine Science and Engineering, 11(10): 1868. https://doi.org/10.3390/jmse11101868 Frölicher T., Ramseyer L., Raible C., Rodgers K., and Dunne J., 2020, Potential predictability of marine ecosystem drivers, Biogeosciences, 17(7): 2061-2083. https://doi.org/10.5194/bg-2019-506 Grimshaw R., 2016, Nonlinear wave equations for oceanic internal solitary waves, Studies in Applied Mathematics, 136(2): 214-237. https://doi.org/10.1111/sapm.12100 Grimshaw R., and Helfrich K., 2017, Internal solitary wave generation by tidal flow over topography, Journal of Fluid Mechanics, 839: 387-407. https://doi.org/10.1017/jfm.2018.21 Grimshaw R., Pelinovsky E., and Talipova T., 2007, Modelling internal solitary waves in the coastal ocean, Surveys in Geophysics, 28: 273-298. https://doi.org/10.1007/S10712-007-9020-0 Gula J., Molemaker M., and McWilliams J., 2016, Topographic generation of submesoscale centrifugal instability and energy dissipation, Nature Communications, 7(1): 12811.. https://doi.org/10.1038/ncomms12811 Gururaj S., and Guha A., 2021, Resonant and near-resonant internal wave triads for non-uniform stratifications, Part 2, Vertically bounded domain with mild-slope bathymetry, Journal of Fluid Mechanics, 943: A33. https://doi.org/10.1017/jfm.2022.431 He X., Chen X., Li Q., Xu T., and Meng J., 2023, Numerical simulations and an updated parameterization of the breaking internal solitary wave over the continental shelf, Journal of Geophysical Research: Oceans, 128(11): e2023JC019975. https://doi.org/10.1029/2023jc019975 Holbrook N., Gupta A., Oliver E., Hobday A., Benthuysen J., Scannell H., Smale D., and Wernberg T., 2020, Keeping pace with marine heatwaves, Nature Reviews Earth and Environment, 1: 482-49. https://doi.org/10.1038/s43017-020-0068-4 Kaminski A., and Smyth W., 2019, Stratified shear instability in a field of pre-existing turbulence, Journal of Fluid Mechanics, 862: 639-658. https://doi.org/10.1017/jfm.2018.973

RkJQdWJsaXNoZXIy MjQ4ODYzNA==