IJMS_2024v14n4

International Journal of Marine Science, 2024, Vol.14, No.4, 256-265 http://www.aquapublisher.com/index.php/ijms 264 References Anvarian Z., Mykytyn K., Mukhopadhyay S., Pedersen L.B., and Christensen S.T., 2019, Cellular signalling by primary cilia in development organ function and disease, Nature Reviews Nephrology, 15(4): 199-219. https://doi.org/10.1038/s41581-019-0116-9 Bier E., and Robertis E.M., 2015, BMP gradients: a paradigm for morphogen-mediated developmental patterning, Science, 348(6242): aaa5838. https://doi.org/10.1126/science.aaa5838 Bonar N., Gittin D., and Petersen C., 2022, Src acts with WNT/FGFRL signaling to pattern the planarian anteroposterior axis, Development, 149(7): dev200125. https://doi.org/10.1242/dev.200125 Burnett J., Lupu F., and Eggenschwiler J., 2017, Proper ciliary assembly is critical for restricting Hedgehog signaling during early eye development in mice, Developmental Biology, 430(1): 32-40. https://doi.org/10.1016/j.ydbio.2017.07.012 Cantaut-Belarif Y., Sternberg J.R., Thouvenin O., Wyart C., and Bardet P.L., 2018, The reissner fiber in the cerebrospinal fluid controls morphogenesis of the body axis, Current Biology, 28: 2479-2486.e4. https://doi.org/10.1016/j.cub.2018.05.079 Carron C., and Shi D., 2016, Specification of anteroposterior axis by combinatorial signaling during Xenopus development, Wiley Interdisciplinary Reviews: Developmental Biology, 5(2): 150-168. https://doi.org/10.1002/wdev.217 Chien Y., Keller R., Kintner C., and Shook D., 2015, Mechanical strain determines the axis of planar polarity in ciliated epithelia, Current Biology, 25: 2774-2784. https://doi.org/10.1016/j.cub.2015.09.015 Chien Y., Srinivasan S., Keller R., and Kintner C., 2018, Mechanical strain determines cilia length motility and planar position in the left-right organizer, Developmental Cell, 45(3): 316-330.e4. https://doi.org/10.1016/j.devcel.2018.04.007 Cole E., and Gaertig J., 2022, Anterior–posterior pattern formation in ciliates, The Journal of Eukaryotic Microbiology, 69(5): e12890. https://doi.org/10.1111/jeu.12890 Derrick C., Santos-Ledo A., Eley L., Henderson D., and Chaudhry B., 2022, Sequential action of JNK genes establishes the embryonic left-right axis, Development (Cambridge England), 149(9): dev200136. https://doi.org/10.1242/dev.200136 Durston A., 2019, What are the roles of retinoids other morphogens and Hox genes in setting up the vertebrate body axis? Genesis, 57(7-8): e23296. https://doi.org/10.1002/dvg.23296 Elliott K., and Brugmann S., 2019, Sending mixed signals: cilia-dependent signaling during development and disease, Developmental Biology, 447(1): 28-41. https://doi.org/10.1016/j.ydbio.2018.03.007 Fuentes R., Tajer B., Kobayashi M., Pelliccia J., Langdon Y., Abrams E., and Mullins M., 2020, The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish, Current Topics in Developmental Biology, 140: 341-389. https://doi.org/10.1016/bs.ctdb.2020.05.002 Gokey J., Dasgupta A., and Amack J., 2015, The V-ATPase accessory protein Atp6ap1b mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish, Developmental Biology, 407(1): 115-130. https://doi.org/10.1016/j.ydbio.2015.08.002 Grimes D., and Burdine R., 2017, Left-right patterning: breaking symmetry to asymmetric morphogenesis., Trends in Genetics, 33(9): 616-628. https://doi.org/10.1016/j.tig.2017.06.004 Grimes D., Keynton J., Buenavista M., Jin X., Patel S., Kyosuke S., Vibert J., Williams D., Hamada H., Hussain R., Nauli S., and Norris D., 2016, Genetic analysis reveals a hierarchy of interactions between polycystin-encoding genes and genes controlling cilia function during left-right determination, PLoS Genetics, 12(6): e1006070. https://doi.org/10.1371/journal.pgen.1006070 Guzzetta A., Koska M., Rowton M., Sullivan K., Jacobs-Li J., Kweon J., Hidalgo H., Eckart H., Hoffmann A., Back R., Lozano S., Moon A., Basu A., Bressan M., Pott S., and Moskowitz I., 2020, Hedgehog–FGF signaling axis patterns anterior mesoderm during gastrulation, Proceedings of the National Academy of Sciences, 117: 15712-15723. https://doi.org/10.1073/pnas.1914167117 Hamada H., 2020, Molecular and cellular basis of left–right asymmetry in vertebrates, Proceedings of the Japan Academy, Series B Physical and Biological Sciences, 96: 273-296. https://doi.org/10.2183/pjab.96.021 Kopinke D., Norris A., and Mukhopadhyay S., 2020, Developmental and regenerative paradigms of cilia regulated hedgehog signaling, Seminars in Cell and Developmental Biology, 110: 89-103. https://doi.org/10.1016/j.semcdb.2020.05.029 Lee m., Hwang K., Oh H., Ji-ae K., Kim H., Cho H., Lee J., Ko J., Choi J., Jeong Y., You K., Kim J., Park D., Nam K., Aizawa S., Kiyonari H., Shioi G., Park J., Zhou W., Kim N., and Kim C., 2015, IFT46 plays an essential role in cilia development, Developmental Biology, 400(2): 248-257. https://doi.org/10.1016/j.ydbio.2015.02.009 Legué E., and Liem K., 2020, Mutations in ciliary trafficking genes affect sonic hedgehog-dependent neural tube patterning differentially along the anterior–posterior axis, Neuroscience, 450: 3-14. https://doi.org/10.1016/j.neuroscience.2020.07.015 Little R., and Norris D., 2020, Right left and cilia: how asymmetry is established., Seminars in Cell and Developmental Biology, 110: 11-18. https://doi.org/10.1016/j.semcdb.2020.06.003

RkJQdWJsaXNoZXIy MjQ4ODYzNA==