IJMS_2024v14n4

International Journal of Marine Science, 2024, Vol.14, No.4, 245-255 http://www.aquapublisher.com/index.php/ijms 254 Paskin L., Conan B., Perignon Y., and Aubrun S., 2022, Evidence of ocean waves signature in the space-time turbulent spectra of the lower marine atmosphere measured by a scanning LiDAR, Remote Sensing, 14(13): 3007. https://doi.org/10.3390/rs14133007 Pérez J., Menéndez M., Camus P., Méndez F., and Losada I., 2015, Statistical multi-model climate projections of surface ocean waves in Europe, Ocean Modelling, 96: 161-170. https://doi.org/10.1016/J.OCEMOD.2015.06.001 Pincus R., Fairall C., Bailey A., Chen H., Chuang P., Boer G., Feingold G., Henze D., Kalen Q., Kazil J., Leandro M., Lundry A., Moran K., Naeher D., Noone D., Patel A., Pezoa S., Popstefanija I., Thompson E., Warnecke J., and Zuidema P., 2021, Observations from the NOAA P-3 aircraft during ATOMIC, Earth System Science Data, 13(7): 3281-3296. https://doi.org/10.5194/ESSD-13-3281-2021 Qiao F., Yuan Y., Deng J., Dai D., and Song Z., 2016, Wave-turbulence interaction-induced vertical mixing and its effects in ocean and climate models, Philosophical Transactions of the Royal Society A-Mathematical, Physical and Engineering Sciences, 374(2065): 20150201. https://doi.org/10.1098/rsta.2015.0201 Reineman B., Lenain L., and Melville W., 2016, The use of ship-launched fixed-wing UAVs for measuring the marine atmospheric boundary layer and ocean surface processes, Journal of Atmospheric and Oceanic Technology, 33: 2029-2052. https://doi.org/10.1175/JTECH-D-15-0019.1 Rossi G., Cannata A., Iengo A., Migliaccio M., Nardone G., Piscopo V., and Zambianchi E., 2021, Measurement of sea waves, Sensors (Basel, Switzerland), 22(1): 78. https://doi.org/10.3390/s22010078 Shaw W.J., Berg L.K., Debnath M., Deskos G., Draxl C., Ghate V.P., Hasager C.B., Kotamarthi R., Mirocha J.D., Muradyan P., Pringle W.J., Turner D.D., and Wilczak J.M., 2022, Scientific challenges to characterizing the wind resource in the marine atmospheric boundary layer, Wind Energy Science, 156: 1-47. https://doi.org/10.5194/wes-2021-156 Shrestha K., and Anderson W., 2019, Coastal Langmuir circulations induce phase-locked modulation of bathymetric stress, Environmental Fluid Mechanics, 20: 873-884. https://doi.org/10.1007/s10652-019-09727-4 Smit P., Houghton I., Jordanova K., Portwood T., Shapiro E., Clark D., Sosa M., and Janssen T., 2021, Assimilation of significant wave height from distributed ocean wave sensors, Ocean Modelling, 159: 101738. https://doi.org/10.1016/j.ocemod.2020.101738 Smith S., Alory G., Andersson A., Asher W., Baker A., Berry D., Drushka K., Figurskey D., Freeman E., Holthus P., Jickells T., Kleta H., Kent E., Kolodziejczyk N., Kramp M., Loh Z., Poli P., Schuster U., Steventon E., Swart S., Tarasova O., Villéon L., and Vinogradova-Shiffer N., 2019, Ship-based contributions to global ocean, weather, and climate observing systems, Frontiers in Marine Science, 6: 434. https://doi.org/10.3389/fmars.2019.00434 Song J.B., Fan W., Li S., and Zhou M.,2015, Impact of surface waves on the steady near-surface wind profiles over the ocean, Boundary-Layer Meteorology, 155: 111-127. https://doi.org/10.1007/s10546-014-9983-6 Sullivan P., and McWilliams J., 2022, Atmospheric boundary layers over an oceanic eddy, Journal of the Atmospheric Sciences, 79(10): 2601-2620. https://doi.org/10.1175/jas-d-22-0019.1 Sun J., Nappo C., Mahrt L., Belušić D., Grisogono B., Stauffer D., Pulido M., Staquet C., Jiang Q., Pouquet A., Yagüe C., Galperin B., Smith R., Finnigan J., Mayor S., Svensson G., Grachev A., and Neff W., 2015, Review of wave‐turbulence interactions in the stable atmospheric boundary layer, Reviews of Geophysics, 53: 956-993. https://doi.org/10.1002/2015RG000487 Swart S., Gille S., Delille B., Josey S., Mazloff M., Newman L., Thompson A., Thomson J., Ward B., Plessis M., Kent E., Girton J., Gregor L., Heil P., Hyder P., Pezzi L., Souza R., Tamsitt V., Weller R., and Zappa C., 2019, Constraining southern ocean air-sea-ice fluxes through enhanced observations, Frontiers in Marine Science, 6: 421. https://doi.org/10.3389/fmars.2019.00421 Varlas G., Vervatis V., Spyrou C., Papadopoulou E., Papadopoulos A., and Katsafados P., 2020, Investigating the impact of atmosphere-wave-ocean interactions on a Mediterranean tropical-like cyclone, Ocean Modelling, 153: 101675. https://doi.org/10.1016/j.ocemod.2020.101675 Wang X.C., and Kukulka T., 2021, Ocean surface boundary layer response to abruptly turning winds, Journal of Physical Oceanography, 51(6): 1779–1794. https://doi.org/10.1175/JPO-D-20-0198.1 Wu L.C., Breivik Ø., and Rutgersson A., 2019, Ocean‐wave‐atmosphere interaction processes in a fully coupled modeling system, Journal of Advances in Modeling Earth Systems, 11: 3852-3874. https://doi.org/10.1029/2019MS001761 Yousefi K., Veron F., and Buckley M., 2020, Momentum flux measurements in the airflow over wind-generated surface waves, Journal of Fluid Mechanics, 895: A15. https://doi.org/10.1017/jfm.2020.276 Zhang T., and Song J., 2018, Effects of sea-surface waves and ocean spray on air-sea momentum fluxes, Advances in Atmospheric Sciences, 35(4): 469-478. https://doi.org/10.1007/s00376-017-7101-7

RkJQdWJsaXNoZXIy MjQ4ODYzNA==