IJMS_2024v14n3

International Journal of Marine Science, 2024, Vol.14, No.3, 193-203 http://www.aquapublisher.com/index.php/ijms 202 Cai R., Han T., Liao W., Huang J., Li D., Kumar A., and Ma H., 2020, Prediction of surface chloride concentration of marine concrete using ensemble machine learning, Cement and Concrete Research, 136: 106164. https://doi.org/10.1016/j.cemconres.2020.106164 Capotondi A., Jacox M., Bowler C., Kavanaugh M., Lehodey P., Barrie D., Brodie S., Chaffron S., Cheng W., Dias D., Eveillard D., Guidi L., Iudicone D., Lovenduski N., Nye J., Ortiz I., Pirhalla D., Buil M., Saba V., Sheridan S., Siedlecki S., Subramanian A., Vargas C., Lorenzo E., Doney S., Hermann A., Joyce T., Merrifield M., Miller A., Not F., and Pesant S., 2019, Observational needs supporting marine ecosystems modeling and forecasting: from the global ocean to regional and coastal systems, Frontiers in Marine Science, 6: 623. https://doi.org/10.3389/fmars.2019.00623 Chai F., Johnson K., Claustre H., Xing X., Wang Y., Boss E., Riser S., Fennel K., Schofield O., and Sutton A., 2020, Monitoring ocean biogeochemistry with autonomous platforms, Nature Reviews Earth and Environment, 1: 315-326. https://doi.org/10.1038/s43017-020-0053-y. Chen J., Pillai A., Johanning L., and Ashton I., 2021, Using machine learning to derive spatial wave data: a case study for a marine energy site, Environ., Model., Softw., 142: 105066. https://doi.org/10.1016/J.ENVSOFT.2021.105066 Crawford A., Shore J., and Shan S., 2022, Measurement of tidal currents using an autonomous underwater vehicle, IEEE Journal of Oceanic Engineering, 47: 282-294. https://doi.org/10.1109/joe.2021.3112807 Dong C.G., Xu G.J., Han G.Q., Bethel B.D., Xie W.H., and Zhou S.Y., 2022, Recent developments in artificial intelligence in oceanography, Ocean-Land-Atmosphere Research, 6: 623. https://doi.org/10.34133/2022/9870950 Edwards C., Moore A., Hoteit I., and Cornuelle B., 2015, Regional ocean data assimilation, Annual Review of Marine Science, 7: 21-42. https://doi.org/10.1146/annurev-marine-010814-015821 Gentil M., Many G., Madron X., Cauchy P., Pairaud I., Testor P., Verney R., and Bourrin F., 2020, Glider-based active acoustic monitoring of currents and turbidity in the coastal zone, Remote., Sens., 12: 2875. https://doi.org/10.3390/rs12182875 Immas A., Do N., and Alam M., 2021, Real-time in situ prediction of ocean currents, Ocean Engineering, 228: 108922. https://doi.org/10.1016/J.OCEANENG.2021.108922 Jacobs G., D’Addezio J., Ngodock H., and Souopgui I., 2021, Observation and model resolution implications to ocean prediction, Ocean Modelling, 159: 101760. https://doi.org/10.1016/J.OCEMOD.2021.101760 Jiang M., and Zhu Z.Y., 2022, The role of artificial intelligence algorithms in marine scientific research, Frontiers in Marine Science, 9: 920994. https://doi.org/10.3389/fmars.2022.920994 Kavanaugh M., Bell T., Catlett D., Cimino M., Doney S., Klajbor W., Messié M., Montes E., Karger F., Otis D., Santora J., Schroeder I., Trinanes J., and Siegel D., 2021, Satellite remote sensing and the marine biodiversity observation network: current science and future steps, Oceanography, 34(2): 62-79. https://doi.org/10.5670/oceanog.2021.215 Kim K., Kim E., Choi J., Shin J., Kim W., Lee K., Son Y., and Ryu J., 2020, Simulation approach for the tracing the marine pollution using multi-remote sensing data, Journal of remote sensing, 36: 249-261. https://doi.org/10.7780/KJRS.2020.36.2.2.3 Li G.C., Wang Y.J., Shi A.C., Liu Y.H., and Li F., 2023, Review of seawater fiber optic salinity sensors based on the refractive index detection principle, Sensors Basel Switzerland, 23(4): 2187. https://doi.org/10.3390/s23042187 Lin Y.T., Chaytor J., Packard G., Chen T.T., and Kukshtel N., 2022, Acoustic seabed characterization with autonomous underwater vehicles, The Journal of the Acoustical Society of America, 152(4_Supplement): A102-A102. https://doi.org/10.1121/10.0015684 Liu Y.J., Qiu M., Liu C., and Guo Z.W., 2017, Big data challenges in ocean observation: a survey, Personal and Ubiquitous Computing, 21: 55-65. https://doi.org/10.1007/s00779-016-0980-2 Loveday B., Smyth T., Akpınar A., Hull T., Inall M., Kaiser J., Queste B., Tobermann M., Williams C., and Palmer M., 2022, Application of a new net primary production methodology: a daily to annual-scale data set for the North Sea derived from autonomous underwater gliders and satellite Earth observation, Earth System Science Data, 14(9): 3997-4016. https://doi.org/10.5194/essd-14-3997-2022 Malde K., Handegard N., Eikvil L., and Salberg A., 2020, Machine intelligence and the data-driven future of marine science, ICES Journal of Marine Science, 77(4): 1274-1285. https://doi.org/10.1093/icesjms/fsz057 Mantovani C., Corgnati L., Horstmann J., Rubió A., Reyes E., Quentin C., Cosoli S., Asensio J., Mader J., and Griffa A., 2020, Best practices on high frequency radar deployment and operation for ocean current measurement, Frontiers in Marine Science, 7: 210. https://doi.org/10.3389/fmars.2020.00210 Panda J., 2021, Machine learning for naval architecture ocean and marine engineering, Journal of Marine Science and Technology, 28: 1-26. https://doi.org/10.1007/s00773-022-00914-5

RkJQdWJsaXNoZXIy MjQ4ODYzNA==