IJA_2025v15n5

International Journal of Aquaculture, 2025, Vol.15, No.5, 229-239 http://www.aquapublisher.com/index.php/ija 238 Andriantahina F., Liu X., and Huang H., 2013, Genetic map construction and quantitative trait locus (QTL) detection of growth-related traits in Litopenaeus vannamei for selective breeding applications, PLoS ONE, 8(9): e75206. https://doi.org/10.1371/journal.pone.0075206 Banka V., Pheirim R., and Waghmode P., 2024, Genomic innovations in wheat (Triticum aestivumL.): a comprehensive review of recent developments and future directions, Journal of Advances in Biology and Biotechnology, 27(9): 795-806. https://doi.org/10.9734/jabb/2024/v27i91353 Chen B., Zhong P., Wu X., Peng K., Sun Y., Chen X., Zhao H., Xu Z., Liu J., Li H., Li C., and Huang W., 2022, Construction of a genetic linkage map QTLs mapping for low salinity and growth-related traits and identification of the candidate genes in Pacific white shrimp (Litopenaeus vannamei), Aquaculture Reports, 22: 100978. https://doi.org/10.1016/j.aqrep.2021.100978 Chen W., Peng K., Huang M., Zhao J., Zhang Z., Guo H., Liu J., Liu Z., Lu H., and Huang W., 2024, Genetic diversity and structure of 15 full-sib families of Litopenaeus vannamei based on SSR markers, Chinese Journal of Biotechnology, 40(12): 4628-4644. https://doi.org/10.13345/j.cjb.240552 Du Z., Ciobanu D., Onteru S., Gorbach D., Mileham A., Jaramillo G., and Rothschild M., 2010, A gene-based SNP linkage map for pacific white shrimp Litopenaeus vannamei, Animal Genetics, 41(3): 286-294. https://doi.org/10.1111/j.1365-2052.2009.02002.x Francisco F.R., Aono A.H., Da Silva C.C., Gonçalves P.S., Scaloppi E.J., Guen V., Neto R., Souza L., and De Souza A., 2021, Unravelling rubber tree growth by integrating GWAS and biological network-based approaches, Frontiers in Plant Science, 12: 768589. https://doi.org/10.3389/fpls.2021.768589 Gao Y., Zhang X., Yuan J., Zhang C., Li S., and Li F., 2022, CRISPR/Cas9-mediated mutation on an insulin-like peptide encoding gene affects the growth of the ridgetail white prawn Exopalaemon carinicauda, Frontiers in Endocrinology, 13: 986491. https://doi.org/10.3389/fendo.2022.986491 Heriyati E., Ilmi M.B., and Suryono C.A., 2024, Impact of water quality and phytoplankton on juvenile vannamei shrimp growth in low-salinity ponds, Journal of Marine Biotechnology and Immunology, 2(3): 6-11. https://doi.org/10.61741/af5rq076 Huang W., Cheng C., Liu J., Zhang X., Ren C., Jiang X., Chen T., Cheng K., Li H., and Hu C., 2019, Fine mapping of the High-pH tolerance and growth trait-related quantitative trait loci (QTLs) and identification of the candidate genes in Pacific white shrimp (Litopenaeus vannamei), Marine Biotechnology, 22: 1-18. https://doi.org/10.1007/s10126-019-09932-8 Li X., Wang L., and Dai X., 2024, Combined effects of ammonia nitrogen nitrite salinity and temperature negatively impact the growth survival physiological and biochemical parameters and hepatopancreatic structure of Litopenaeus vannamei, Aquaculture, 596: 741845. https://doi.org/10.1016/j.aquaculture.2024.741845 Liu B., Wang Q., Li J., Liu P., and He Y., 2010, A genetic linkage map of marine shrimp Penaeus (Fenneropenaeus) chinensis based on AFLP SSR and RAPD markers, Chinese Journal of Oceanology and Limnology, 28: 815-825. https://doi.org/10.1007/S00343-010-9915-3 Liu M., Dai P., Kong J., Meng X., Sui J., Luo K., Chen B., Fu Q., Cao B., Cao J., and Luan S., 2023, Assessing accuracy of genomic breeding values of selection candidates under biosecurity restrictions by progeny testing in Chinese shrimp Fenneropenaeus chinensis, Aquaculture, 566: 739181. https://doi.org/10.1016/j.aquaculture.2022.739181 Lyu D., Yu Y., Wang Q., Luo Z., Zhang Q., Zhang X., Xiang J., and Li F., 2021, Identification of Growth-associated genes by genome-wide association study and their potential application in the breeding of Pacific white shrimp (Litopenaeus vannamei), Frontiers in Genetics, 12: 611570. https://doi.org/10.3389/fgene.2021.611570 Ma B., Liu Y., Zhang X., Chen T., Zhang L., Hu C., Yu S., Chen G., Liu L., Zhu J., and Luo P., 2024, Genome-wide QTL mapping and RNA-seq reveal genetic mechanisms behind discrepant growth traits in Pacific whiteleg shrimp Litopenaeus vannamei, Aquaculture, 599: 742084. https://doi.org/10.1016/j.aquaculture.2024.742084 Medrano-Mendoza T., Garcia B.F., Caballero-Zamora A., Yáñez J.M., Montoya-Rodríguez L., Quintana-Casares J., Durán-Aguilar M., and Campos-Montes G., 2022, Genetic diversity population structure linkage disequilibrium and GWAS for resistance to WSSV in Pacific white shrimp (Litopenaeus vannamei) using a 50K SNP chip, Aquaculture, 562: 738835. https://doi.org/10.1016/j.aquaculture.2022.738835 Naidu C., Suneetha Y., and Reddy P., 2013, Computational analysis of molt-inhibiting hormone from selected crustaceans, Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 8: 292-299. https://doi.org/10.1016/J.CBD.2013.08.004 Rio S., Mary-Huard T., Moreau L., Bauland C., Palaffre C., Madur D., Combes V., and Charcosset A., 2019, Disentangling group specific QTL allele effects from genetic background epistasis using admixed individuals in GWAS: an application to maize flowering, PLoS Genetics, 16(3): e1008241. https://doi.org/10.1101/669721 Su M., Zhang X., Zhang X., Yuan J., Yang M., and Li F., 2024, Comparative transcriptome analysis provides a glance into the regulatory of insulin-like peptide 1 gene in the Pacific white shrimp Litopenaeus vannamei, Aquaculture, 591: 741126. https://doi.org/10.1016/j.aquaculture.2024.741126

RkJQdWJsaXNoZXIy MjQ4ODYzNA==