International Journal of Aquaculture, 2025, Vol.15, No.5, 221-228 http://www.aquapublisher.com/index.php/ija 227 Allen K.M., Habte-Tsion H.M., Thompson K.R., Filer K., Tidwell J.H., and Kumar V., 2019, Freshwater microalgae (Schizochytriumsp.) as a substitute to fish oil for shrimp feed, Scientific Reports, 9(1): 6178. https://doi.org/10.1038/s41598-019-41020-8 Aulia D., Rivero C.J., Choi W., Hamidoghli A., Bae J., Hwang S., Kim D.H., Lee S., and Bai S.C., 2024, Microalgae feed additives improve growth, immunity, and resistance to Vibrio anguillaruminfection in juvenile rainbow trout, Oncorhynchus mykiss, Int J Food Sci, 59: 123-134. Bahi A., Ramos-Vega A., Angulo C., Monreal-Escalante E., and Guardiola F.A., 2023, Microalgae with immunomodulatory effects on fish, Rev Aquacult, 15: 1257-1829. https://doi.org/10.1111/raq.12792 Baki B., and Yücel S., 2017, Feed cost production income analysis of seabass (Dicentrarchus labrax) aquaculture, International Journal of Ecosystems and Ecology Sciences, 7: 859-864. Bergmann L., Le S.B., Hageskal G., Preuss L., Han Y., Astafyeva Y., Loevenich S., Emmann S., Perez-Garcia P., Indenbirken D., Katzowitsch E., Thümmler F., Alawi M., Wentzel A., Streit W.R., Krohn I., 2024, New dienelactone hydrolase from microalgae bacterial Community antibiofilm activity against fish pathogens and potential applications for aquaculture, Scientific Reports, 14(1): 377. https://doi.org/10.1038/s41598-023-50734-9 Cao S., Zhang P., Zou T., Fei S., Han D., Jin J., Liu H., Yang Y., Zhu X., and Xie S., 2018, Replacement of fishmeal by spirulina Arthrospira platensis affects growth, immune related-gene expression in gibel carp (Carassius auratus gibelio var. CAS III), and its challenge against Aeromonas hydrophila infection, Fish Shellfish Immunol, 78: 62-71. https://doi.org/10.1016/j.fsi.2018.05.022 Díaz N., Muñoz S., Medina A., Riquelme C., and Lozano-Muñoz I., 2025, Microchloropsis gaditana as a natural antimicrobial with a One Health approach to food safety in farmed salmon, Life, 15(3): 455. https://doi.org/10.3390/life15030455 Evrendilek G.A., 2024, The effect of aquaculture feed on the nutritional quality of farmed seafood: a review of feed ingredients and their impact on human health, Food Nutrition Chemistry, 2: 287. https://doi.org/10.18686/fnc287 FAO, 2024, The state of world fisheries and aquaculture 2024 blue transformation in action, Rome: Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/cd0683en Gil M., Rudy M., Duma-Kocan P., Stanisławczyk R., Krajewska A., Dziki D., and Hassoon W.H., 2024, Sustainability of alternatives to animal protein sources: a comprehensive review, Sustainability, 16(17): 7701. https://doi.org/10.3390/su16177701 Ibrahim D., Abd El-Hamid M.I., Al-Zaban M.I., ElHady M., El-Azzouny M.M., ElFeky T.M., Al Sadik G.M., Samy O.M., Hamed T.A., Albalwe F.M., and Abdel-Latif H.M., 2022, Impacts of fortifying Nile tilapia (Oreochromis niloticus) diet with different strains of microalgae on its performance, fillet quality and disease resistance to Aeromonas hydrophila considering the interplay between antioxidant and inflammatory response, Antioxidants, 11(11): 2181. https://doi.org/10.3390/antiox11112181 Ilieva Y., Zaharieva M.M., Kroumov A.D., and Najdenski H., 2024, Antimicrobial and ecological potential of Chlorellaceae and Scenedesmaceae with a focus on wastewater treatment and industry, Fermentation, 10(7): 341. https://doi.org/10.3390/fermentation10070341 Karapanagiotidis I.T., Metsoviti M.N., Gkalogianni E.Z., Psofakis P., Asimaki A., Katsoulas N., and Papapolymerou G., Zarkadas I., 2022, The effects of replacing fishmeal by Chlorella vulgaris and fish oil by Schizochytriumsp. and Microchloropsis gaditana blend on growth performance, feed efficiency, muscle fatty acid composition and liver histology of gilthead seabream (Sparus aurata), Aquaculture, 561: 738709. https://doi.org/10.1016/j.aquaculture.2022.738709 Katsoulis-Dimitriou S., Nikouli E., Gkalogianni E.Z., Karapanagiotidis I.T., and Kormas K.A., 2024, The effect of dietary fish oil replacement by microalgae on the gilthead sea bream midgut bacterial microbiota, Peer Community J, 4: e113. https://doi.org/10.24072/pcjournal.498 Lee S., Park C.O., Choi W., Bae J., Kim J., Choi S., Katya K., Kim K.W., and Bai S.C., 2022, Partial substitution of fish oil with microalgae (Schizochytriumsp.) can improve growth performance, nonspecific immunity and disease resistance in rainbow trout, Oncorhynchus mykiss, Animals, 12: 1220. https://doi.org/10.3390/ani12091220 Li M., Li X., Yao W., Wang Y., Zhang X., and Leng X., 2022, An evaluation of replacing fishmeal with Chlorella sorokiniana in the diet of Pacific white shrimp (Litopenaeus vannamei): growth, body color, and flesh quality, Aquaculture Nutrition, 2022: 8617265. https://doi.org/10.1155/2022/8617265 Pakravan S., Akbarzadeh A., Hajimoradloo A., Alami M., and Ghobadi S.H., 2017, Partial and total replacement of fish meal by marine microalga Spirulina platensis in diets for whiteleg shrimp (Litopenaeus vannamei): effects on growth performance, body composition, and fatty acid profile, Aquaculture Research, 48: 4315-4324. https://doi.org/10.1111/are.13379 Parra-Riofrio G., Moreno P., García-Rosado E., Borrego J.J., and Alonso M.C., 2023, Tetraselmis suecicaand Porphyridium cruentumexopolysaccharides show anti-VHSV activity on RTG-2 cells, Aquacult Int, 31: 3145-3157. https://doi.org/10.1007/s10499-023-01202-8
RkJQdWJsaXNoZXIy MjQ4ODYzNA==