International Journal of Aquaculture, 2025, Vol.15, No.4, 197-207 http://www.aquapublisher.com/index.php/ija 207 She Z., Peng Y., Jia Z., Kang Z., and Yu D., 2022, Molecular mechanisms affecting the difference in salinity adaptability between juvenile and adult Hong Kong oysters, Aquaculture Reports, 24: 101171. https://doi.org/10.1016/j.aqrep.2022.101171 Suárez-Ulloa V., Rivera-Casas C., Michel M., and Eirín-López J., 2019, Seasonal DNA methylation variation in the flat tree oyster isognomon alatus from a mangrove ecosystem in north biscayne bay florida, Journal of Shellfish Research, 38: 79-88. https://doi.org/10.2983/035.038.0108 Tan C., Shi C., Li Y., Teng W., Li Y., Fu H., Ren L., Yu H., Li Q., and Liu S., 2022, Comparative methylome analysis reveals epigenetic signatures associated with growth and shell color in the pacific oyster Crassostrea gigas, Marine Biotechnology, 24: 911-926. https://doi.org/10.1007/s10126-022-10154-8 Valdivieso A., Morga B., Dégremont L., Mège M., Courtay G., Dorant Y., Escoubas J., Gawra J., De Lorgeril J., Mitta G., Cosseau C., and Vidal-Dupiol J., 2025, DNA methylation landscapes before and after Pacific oyster mortality syndrome are different within and between resistant and susceptible Magallana gigas, The Science of the Total Environment, 96(2): 178385. https://doi.org/10.1016/j.scitotenv.2025.178385 Venkataraman Y.R., Downey‐Wall A.M., Ries J., Westfield I., White S., Roberts S., and Lotterhos K., 2020, General DNA methylation patterns and environmentally-induced differential methylation in the eastern oyster (Crassostrea virginica), BioRxiv, 7: 225. https://doi.org/10.3389/fmars.2020.00225 Wang X., Li A., Wang W., Que H., Zhang G., and Li L., 2020, DNA methylation mediates differentiation in thermal responses of Pacific oyster (Crassostrea gigas) derived from different tidal levels, Heredity, 126: 10-22. https://doi.org/10.1038/s41437-020-0351-7 Wang X., Li A., Wang W., Zhang G., and Li L., 2021, Direct and heritable effects of natural tidal environments on DNA methylation in Pacific oysters (Crassostrea gigas), Environmental Research, 197: 111058. https://doi.org/10.1016/j.envres.2021.111058 Wang X., Wang W., Li Z., Sun G., Xu T., Xu X., Feng Y., Luo Q., Li B., and Yang J., 2021, Comprehensive analysis of differentially expressed mRNA non-coding RNA and their competitive endogenous RNA network of Pacific oyster Crassostrea gigas with different glycogen content between different environments, Frontiers in Marine Science, 8: 725628. https://doi.org/10.3389/fmars.2021.725628 Yang C., Wu H., Chen J., Liao Y., Mkuye R., Deng Y., and Du X., 2023, Integrated transcriptomic and metabolomic analysis reveals the response of pearl oyster (Pinctada fucata martensii) to long-term hypoxia, Marine Environmental Research, 191: 106133. https://doi.org/10.1016/j.marenvres.2023.106133 Yang H., and Li Q., 2022, The DNA methylation level is associated with the superior growth of the hybrid crosses in the Pacific oyster Crassostrea gigas, Aquaculture, 547: 737421. https://doi.org/10.1016/j.aquaculture.2021.737421 Yang J., Yang S., Liao Y., Deng Y., and Jiao Y., 2023, Histone deacetylase inhibitor butyrate inhibits the cellular immunity and increases the serum immunity of pearl oyster Pinctada fucata martensii, Fish and Shellfish Immunology, 133: 108529. https://doi.org/10.1016/j.fsi.2023.108529 Zhang B., Liang H., Zou H., Lu J., Zhang M., and Liang B., 2022, Comprehensive analysis of the lncRNAs mRNAs and miRNAs implicated in the immune response of Pinctada fucata martensii to Vibrio parahaemolyticus, Fish and Shellfish Immunology, 130: 132-140. https://doi.org/10.1016/j.fsi.2022.09.006 Zhang X., Li Q., Kong L., and Yu H., 2017, DNA methylation changes detected by methylation-sensitive amplified polymorphism in the Pacific oyster (Crassostrea gigas) in response to salinity stress, Genes and Genomics, 39: 1173-1181. https://doi.org/10.1007/s13258-017-0583-y Zhang Y., Jiao Y., Tian Q., Du X., and Deng Y., 2020, Comprehensive analysis of microRNAs in the mantle central and mantle edge provide insights into shell formation in pearl oyster Pinctada fucata martensii, Comparative Biochemistry and Physiology, 252: 110508. https://doi.org/10.1016/j.cbpb.2020.110508
RkJQdWJsaXNoZXIy MjQ4ODYzNA==