International Journal of Aquaculture, 2025, Vol.15, No.4, 184-196 http://www.aquapublisher.com/index.php/ija 195 Evliyaoğlu E., Eroldoğan O.T., Yılmaz H.A., Genç M.A., Genç E., Duncan N., Aktaş M., and Güroy D., 2019, Artificial sex reversal of white grouper (Epinephelus aeneus) utilizing aromatase inhibitor (Fadrozole), Aquaculture Research, 50(5): 1539-1546. https://doi.org/10.1111/ARE.14030 Fan Z., Zou Y., Liang D., Tan X., Jiao S., Wu Z., Li J., Zhang P., and You F., 2019, Roles of forkhead box protein L2 (foxl2) during gonad differentiation and maintenance in a fish the olive flounder (Paralichthys olivaceus), Reproduction Fertility and Development, 31(11): 1742-1752. https://doi.org/10.1071/RD18233 Han Y., Peng C., Wang L., Guo J., Lu M., Chen J., Liu Y., Li S., Zhao M., Zhang Y., and Lin H., 2018, Female-to-male sex reversal in orange-spotted grouper (Epinephelus coioides) caused by overexpressing of Amh in vivo, Biology of Reproduction, 99: 1205-1215. https://doi.org/10.1093/biolre/ioy157 Hawe J.S., Theis F.J., and Heinig M., 2019, Inferring interaction networks from multi-omics data, Frontiers in Genetics, 10: 535. https://doi.org/10.3389/fgene.2019.00535 Li J.Y., and Xu Q.B., 2024, Molecular mechanisms of axis development: insights from cilia biology, International Journal of Marine Science, 14(4): 256-265. https://doi.org/10.5376/ijms.2024.14.0029 Li M.M., 2024, Molecular mechanisms underlying the diversification of aquatic life forms, International Journal of Aquaculture, 14(4): 184-194. https://doi.org/10.5376/ija.2024.14.0019 Lyu Q.J., Hu J., Yang X.K., Liu X.C., Chen Y.B., Xiao L., Liu Y.L., Wang Q., Chen J.X., Huang M.W., Yu Z.S., Yang H., Shi H., Zhang Y., and Zhao H.H., 2019, Expression profiles of dmrts and foxls during gonadal development and sex reversal induced by 17α-methyltestosterone in the orange-spotted grouper, General and Comparative Endocrinology, 274: 26-36. https://doi.org/10.1016/j.ygcen.2018.12.014 Miao Z., Humphreys B., McMahon A., and Kim J., 2021, Multi-omics integration in the age of million single-cell data, Nature Reviews Nephrology, 17: 710-724. https://doi.org/10.1038/s41581-021-00463-x Nagarajan G., Aruna A., and Chang C., 2013, Neurosteroidogenic enzymes and their regulation in the early brain of the protogynous grouper Epinephelus coioides during gonadal sex differentiation, General and Comparative Endocrinology, 181: 271-87. https://doi.org/10.1016/j.ygcen.2012.10.013 Nakamura M., Nozu R., Nakamura S., Higa M., Bhandari R.K., Kobayashi Y., Horiguchi R., Komatsu T., Kojima Y., Murata R., Soyano K., Ogawa S., Hirai T., Matsubara H., Tokumoto T., Kobayashi T., Kagawa H., Adachi S., Yamauchi K., and Nagahama Y., 2021, Morphological and physiological studies on sex change in tropical fish: sexual plasticity of the ovaries of hermaphroditic and gonochoristic fish, Galaxea Journal of Coral Reef Studies, 24(1): 5-17. https://doi.org/10.3755/galaxea.g2021_s6r Palma P., Takemura A., Libunao G.X., Superio J., Jesus-Ayson E.G., Ayson F., Nocillado J., Dennis L., Chan J., Thai T., Ninh N., and Elizur A., 2019, Reproductive development of the threatened giant grouper Epinephelus lanceolatus, Aquaculture, 509: 1-7. https://doi.org/10.1016/J.AQUACULTURE.2019.05.001 Peng C., Wang Q., Shi H.R., Chen J.X., Li S.S., Zhao H.H., Lin H.R., Yang J.C., and Zhang Y., 2020, Natural sex change in mature protogynous orange-spotted grouper (Epinephelus coioides): gonadal restructuring sex hormone shifts and gene profiles, Journal of Fish Biology, 97(3): 785-793. https://doi.org/10.1111/jfb.14434 Qu M., Cao X., Wang H., Lin L., and Ding S., 2021, Gonadal structure and expression localization of sex-related genes in the hermaphroditic grouper Epinephelus akaara (Perciformes: Epinephelidae), Aquaculture, 542: 736902. https://doi.org/10.1016/J.AQUACULTURE.2021.736902 Shi S.Y., Zhang Z.Y., Li S.S., Liu S.Q., Lu D., Liu M., Meng Z., Cheng C., Liu X., and Lin H., 2010, Molecular identification of the Kiss2/Kiss1ra system and its potential function during 17Alpha-methyltestosterone-induced sex reversal in the orange-spotted grouper epinephelus coioides1, CABI, 83: 63-74. https://doi.org/10.1095/biolreprod.109.080044 Soyano K., Amagai T., Yamaguchi T., Mushirobira Y., Xu W., Phạm N., and Murata R., 2022, Endocrine regulation of maturation and sex change in groupers, Cells, 11(5): 825. https://doi.org/10.3390/cells11050825 Tanvir R.B., Islam M.M., Sobhan M., Luo D., and Mondal A.M., 2023, Mogat: an improved multi-omics integration framework using graph attention networks, bioRxiv, 2023: 535195. https://doi.org/10.1101/2023.04.01.535195 Valous N., Popp F., Zörnig I., Jäger D., and Charoentong P., 2024, Graph machine learning for integrated multi-omics analysis, British Journal of Cancer, 131: 205-211. https://doi.org/10.1038/s41416-024-02706-7 Wang Q., Huang M., Peng C., Wang X., Xiao L., Wang D., Chen J., Zhao H., Zhang H., Li S., Yang H., Liu Y., Lin H., and Zhang Y., 2018, MT-feeding-induced impermanent sex reversal in the orange-spotted grouper during sex differentiation, International Journal of Molecular Sciences, 19(9): 2828. https://doi.org/10.3390/ijms19092828 Wang Q., Liu Y., Peng C., Wang X., Xiao L., Wang D., Chen J., Zhang H., Zhao H., Li S., Zhang Y., and Lin H., 2017, Molecular regulation of sex change induced by methyltestosterone -feeding and methyltestosterone -feeding withdrawal in the protogynous orange-spotted grouper, Biology of Reproduction, 97: 324-333. https://doi.org/10.1093/biolre/iox085
RkJQdWJsaXNoZXIy MjQ4ODYzNA==