International Journal of Aquaculture, 2025, Vol.15, No.4, 165-174 http://www.aquapublisher.com/index.php/ija 174 Rawls K., Blais E., Dougherty B., Vinnakota K., Pannala V., Wallqvist A., Kolling G., and Papin J., 2019, Genome-scale characterization of toxicity-induced metabolic alterations in primary hepatocytes, Toxicological Sciences, 172: 279-291. https://doi.org/10.1093/toxsci/kfz197 Rhee J., Dahms H., Choi B., Lee J., and Choi I., 2012, Identification and analysis of whole microcystin synthetase genes from two Korean strains of the cyanobacteriumMicrocystis aeruginosa, Genes and Genomics, 34: 435-439. https://doi.org/10.1007/s13258-012-0009-9 Ribeiro M., Tucci A., Matarazzo M., Viana-Niero C., and Nordi C., 2020, Detection of cyanotoxin-producing genes in a eutrophic reservoir (billings reservoir são paulo Brazil), Water, 12: 903. https://doi.org/10.3390/w12030903 Salvador D., Churro C., and Valério E., 2016, Evaluating the influence of light intensity in mcyAgene expression and microcystin production in toxic strains of Planktothrix agardhii and Microcystis aeruginosa, Journal of Microbiological Methods, 123: 4-12. https://doi.org/10.1016/j.mimet.2016.02.002 Schampera C., and Hellweger F., 2024, Nitrogen availability controls response of microcystin concentration to phosphorus reduction: evidence from model application to multiple lakes, Harmful Algae, 139: 102711. https://doi.org/10.1016/j.hal.2024.102711 Shishido T.K., Kaasalainen U., Fewer D.P., Rouhiainen L., Jokela J., Wahlsten M., Fiore M., Yunes J., Rikkinen J., and Sivonen K., 2013, Convergent evolution of [D-Leucine1] microcystin-LR in taxonomically disparate cyanobacteria, BMC Evolutionary Biology, 13(1): 86. https://doi.org/10.1186/1471-2148-13-86 Stern D.B., Raborn R.T., Lovett S.P., Boise N.R., Carasquilla L., Enke S., Radune D., Woodruff D., Wahl K., and Rosovitz M., 2024, Novel toxin biosynthetic gene cluster in harmful algal bloom-causing Heteroscytonema crispum: insights into the origins of paralytic shellfish toxins, Genome Biology and Evolution, 17(1): evae248. https://doi.org/10.1093/gbe/evae248 Teneva I., Velikova V., Belkinova D., Moten D., and Dzhambazov B., 2023, Allelopathic potential of the cyanotoxins microcystin-LR and Cylindrospermopsin on green algae, Plants, 12(6): 1403. https://doi.org/10.3390/plants12061403 Thomas K.M., Wright E.J., Beach D., and McCarron P., 2024, Multi-class cyanobacterial toxin analysis using hydrophilic interaction liquid chromatography-mass spectrometry, Journal of Chromatography A, 1738: 465483. https://doi.org/10.1016/j.chroma.2024.465483 Wan X., Yao G., Wang K., Liu Y., Wang F., and Jiang H., 2023, Transcriptomic analysis of the response of the toxic dinoflagellate Prorocentrum lima to phosphorous limitation, Microorganisms, 11(9): 2216. https://doi.org/10.3390/microorganisms11092216 Wei N., Hu C., Dittmann E., Song L., and Gan N., 2024, The biological functions of microcystins, Water Research, 262: 122119. https://doi.org/10.1016/j.watres.2024.122119 Zeng Y., Cai Z., Zhu J., Du X., and Zhou J., 2020, Two hierarchical LuxR-LuxI type quorum sensing systems in Novosphingobium activate microcystin degradation through transcriptional regulation of the mlr pathway, Water Research, 183: 116092. https://doi.org/10.1016/j.watres.2020.116092 Zhang Y., Sun W., Wang B., Liu Z., Liu Z., Zhang X., Wang B., Han Y., and Zhang H., 2024, Metabolomics reveals the lipid metabolism disorder in Pelophylax nigromaculatus exposed to environmentally relevant levels of microcystin-LR, Environmental Pollution, 358: 124458. https://doi.org/10.1016/j.envpol.2024.124458 Zhou C., Chen H., Zhao H., and Wang Q., 2021, Microcystin biosynthesis and toxic effects, Algal Research-Biomass Biofuels and Bioproducts, 55: 102277. https://doi.org/10.1016/J.ALGAL.2021.102277 Zhu L., Zuo J., Song L., and Gan N., 2016, Microcystin-degrading bacteria affect mcyD expression and microcystin synthesis in Microcystis spp., Journal of Environmental Sciences, 41: 195-201. https://doi.org/10.1016/j.jes.2015.06.016
RkJQdWJsaXNoZXIy MjQ4ODYzNA==