IJA_2025v15n2

International Journal of Aquaculture, 2025, Vol.15, No.2, 57-66 http://www.aquapublisher.com/index.php/ija 65 Lomartire S., Marques J.C., and Gonçalves A.M.M., 2021, The key role of zooplankton in ecosystem services: a perspective of interaction between zooplankton and fish recruitment, Ecological Indicators, 129: 107867. https://doi.org/10.1016/J.ECOLIND.2021.107867 Mao Z.G., Gu X.H., Cao Y., Zhang M., Zeng Q.F., Chen H.H., Shen R.J., and Jeppesen E., 2020, The role of top-down and bottom-up control for phytoplankton in a subtropical shallow eutrophic lake: evidence based on long-term monitoring and modeling, Ecosystems, 23: 1449-1463. https://doi.org/10.1007/s10021-020-00480-0 McMahon K.W., Ambrose W.G., Reynolds M.J., Johnson B.J., Whiting A., and Clough L.M., 2021, Arctic lagoon and nearshore food webs: relative contributions of terrestrial organic matter phytoplankton and phytobenthos vary with consumer foraging dynamics, Estuarine Coastal and Shelf Science, 257: 107388. https://doi.org/10.1016/J.ECSS.2021.107388. Mooney B., 2024, Understanding the efficiency of energy flow through aquatic food webs, Aqua Introductory Research Essay, 2024: 1. https://doi.org/10.54612/a.2kg9dkp0ch Moullec F., Gascuel D., Bentorcha K., Guénette S., and Robert M., 2017, Trophic models: what do we learn about Celtic sea and bay of Biscay ecosystems, Journal of Marine Systems, 172: 104-117. https://doi.org/10.1016/J.JMARSYS.2017.03.008 Mukherjee M., Suresh V.R., and Kundu S., 2023, NPZfc: an ecological relation based fish catch prediction model using Artificial neural network, BioRxiv, 8: 566233. https://doi.org/10.1101/2023.11.08.566233 Potapov A.M., Brose U., Scheu S., and Tiunov A.V., 2019, Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems, The American Naturalist, 194: 823-839. https://doi.org/10.1086/705811 Qin Q., Zhang F.B., Liu F., Wang C.L., and Liu H.Z., 2021, Food web structure and trophic interactions revealed by stable isotope analysis in the midstream of the chishui river a tributary of the Yangtze River China, Water, 13(2): 195. https://doi.org/10.3390/W13020195 Rakowski C.J., and Leibold M.A., 2022, Beyond the fish-daphnia paradigm: testing the potential for pygmy backswimmers (Neoplea striola) to cause trophic cascades in subtropical ponds, PeerJ, 10: e14094. https://doi.org/10.7717/peerj.14094 Razlutskij V., Mei X., Maisak N., Sysova E., Lukashanets D., Makaranka A., Jeppesen E., and Zhang X., 2021, Omnivorous carp (Carassius gibelio) increase eutrophication in part by preventing development of large-bodied zooplankton and submerged macrophytes, Water, 13: 1497. https://doi.org/10.3390/W13111497 Schramski J., Dell A., Grady J., Sibly R., and Brown J., 2015, Metabolic theory predicts whole-ecosystem properties, Proceedings of the National Academy of Sciences, 112: 2617-2622. https://doi.org/10.1073/pnas.1423502112 Stock C., John J., Rykaczewski R., Asch R., Cheung W., Dunne J., Friedland K., Lam V., Sarmiento J., and Watson R., 2017, Reconciling fisheries catch and ocean productivity, Proceedings of the National Academy of Sciences, 114: E1441-E1449. https://doi.org/10.1073/pnas.1610238114 Su H., Feng Y., Chen J., Chen J.S., Fang J., and Xie P., 2021, Determinants of trophic cascade strength in freshwater ecosystems: a global analysis, Ecology, 102(7): e03370. https://doi.org/10.1002/ecy.3370 Thomas P.K., Kunze C., Van De Waal D.B., Hillebrand H., and Striebel M., 2022, Elemental and biochemical nutrient limitation of zooplankton: a meta-analysis, Ecology Letters, 25(12): 2776-2792. https://doi.org/10.1111/ele.14125 Tweddle J.F., Gubbins M., and Scott B.E., 2018, Should phytoplankton be a key consideration for marine management, Marine Policy, 97: 1-9. https://doi.org/10.1016/J.MARPOL.2018.08.026 Ullah H., Nagelkerken I., Goldenberg S.U., and Fordham D.A., 2018, Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation, PLoS Biology, 16(1): e2003446. https://doi.org/10.1371/journal.pbio.2003446 Van Der Lee G.H., Vonk A., Verdonschot R.C.M., Kraak M.H.S., Verdonschot P.F.M., and Huisman J., 2020, Eutrophication induces shifts in the trophic position of invertebrates in aquatic food webs, Ecology, 102(3): e03275. https://doi.org/10.1002/ecy.3275 Wang H.M., 2024, Beneath the storm: a comparative analysis of natural and anthropogenic factors in marine biogeochemical dynamics, International Journal of Marine Science, 14(3): 158-161. https://doi.org/10.5376/ijms.2024.14.0020 Winder M., Carstensen J., Galloway A.W.E., Jakobsen H.H., and Cloern J.E., 2017, The land–sea interface: a source of high‐quality phytoplankton to support secondary production, Limnology and Oceanography, 62(S1): S258-S271. https://doi.org/10.1002/lno.10650

RkJQdWJsaXNoZXIy MjQ4ODYzNA==