International Journal of Aquaculture, 2025, Vol.15, No.2, 45-56 http://www.aquapublisher.com/index.php/ija 55 Bu Y.K., Liu Y.J., Wang R.X., Wang S.P., Zhang C.Y., Zhang X., Sun Y.Y., and Zhang J.Q., 2025, CRISPR/Cas9-mediated deletion of Mmd2 gene affects the growth of Exopalaemon carinicauda, Aquaculture, 599: 742127. https://doi.org/10.1016/j.aquaculture.2025.742127 Eriksson D., Kershen D., Nepomuceno A., Pogson B., Priet H., Purnhagen K., Smyth S., Wesseler J., and Whelan, A., 2019, A comparison of the EU regulatory approach to directed mutagenesis with that of other jurisdictions, consequences for international trade and potential steps forward, The New Phytologist, 222(4): 1673-1684. https://doi.org/10.1111/nph.15627 Ferdous M.A., Islam S.I., Habib N., Almehmadi M., Allahyani M., Alsaiari A.A., and Shafie A., 2022, CRISPR-Cas genome editing technique for fish disease management: current study and future perspective, Microorganisms, 10: 2012. https://doi.org/10.3390/microorganisms10102012 Fu S., Zhou H.B., and Liu J.Y., 2024, Molecular breeding of Litopenaeus vannamei: a review, Journal of Fishery Sciences of China, 31(3): 368-379. https://doi.org/10.12264/JFSC2024-0030 Gao Y., Zhang X.J., Yuan J.B., Zhang C.S., Li S.H., and Li F.H., 2022, CRISPR/Cas9-mediated mutation on an insulin-like peptide encoding gene affects the growth of the ridgetail white prawn Exopalaemon carinicauda, Frontiers in Endocrinology, 13: 986491. https://doi.org/10.3389/fendo.2022.986491 Gui T., Zhang J., Song F., Sun Y., Xie S., Yu K., and Xiang J., 2016, CRISPR/Cas9-mediated genome editing and mutagenesis of EcChi4 in Exopalaemon carinicauda, Genes|Genomes|Genetics, 6: 3757-3764. https://doi.org/10.1534/g3.116.034082 Hillary V.E., and Ceasar S.A., 2023, A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering, Mol Biotechnol. Mar, 65(3): 311-325. https://doi.org/10.1007/s12033-022-00567-0 Islam M.A., Rony S.A., Rahman M.B., Çınar M.U., Villena J., Uddin M.J., and Kitazawa H., 2020, Improvement of disease resistance in livestock: application of immunogenomics and CRISPR/Cas9 technology, Animals, 10(12): 2236. https://doi.org/10.3390/ani10122236 Kluebsoongnoen J., Panyim S., Sarnowski T., and Udomkit A., 2021, Retinoid X receptor modulates vitellogenin gene expression in black tiger shrimp, Penaeus monodon, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 254: 110877. https://doi.org/10.1016/j.cbpa.2020.110877 Lai X., Kong J., Wang Q., Wang W., and Meng X., 2013, Identification and molecular characterization of a C-type lectin-like protein from Chinese shrimp (Fenneropenaeus chinensis), Molecular Biology Reports, 40: 2223-2230. https://doi.org/10.1007/s11033-012-2284-6 Lee D., Yu Y.B., Choi J.H., Jo A.H., Hong S.M., Kang J.C., and Kim J.H., 2022, Viral shrimp diseases listed by the OIE: a review, Viruses, 14(3): 585. https://doi.org/10.3390/v14030585 Liao J., Lai Z.X., He C.M., Li G.C., Dong Z.D., Guo Y.S., and Wang Z.D., 2025, A high-quality chromosome-level genome assembly of Pacific whiteleg shrimp (Penaeus vannamei), Scientific Data, 12(1): 340. https://doi.org/10.1038/s41597-025-04673-x Luo Z., Yu Y., Zhang Q., Bao Z.M., Xiang J.H., and Li F.H., 2022, Comparative transcriptome analysis reveals the adaptation mechanism to high salinity in Litopenaeus vannamei, Frontiers in Marine Science, 9: 864338. https://doi.org/10.3389/fmars.2022.864338 Matsumoto D., Tamamura H., and Nomura W., 2020, A cell cycle-dependent CRISPR-Cas9 activation system based on an anti-CRISPR protein shows improved genome editing accuracy, Communications Biology, 3(1): 601. https://doi.org/10.1038/s42003-020-01340-2 Miao M., Li S.H., Yuan J.B., Liu P.P., Fang X.C., Zhang C.S., Zhang X.J., and Li F.H., 2023, CRISPR/Cas9-mediated gene mutation of EcIAG leads to sex reversal in the male ridgetail white prawn Exopalaemon carinicauda, Frontiers in Endocrinology, 14: 1266641. https://doi.org/10.3389/fendo.2023.1266641 Parra Á., Lossada C., Pérez A., Navarrete J., and González L., 2021, Characterization of CRISPR genetic sequences in microorganisms associated with infections in shrimp (Litopenaeus vannamei), Revista de la Facultad de Agronomía, Universidad del Zulia, 38(2): 360-381. https://doi.org/10.47280/REVFACAGRON(LUZ).V38.N2.08 Plate-Church A., 2019, 234 earning public trust in gene editing, Journal of Animal Science, 97:57-58. https://doi.org/10.1093/jas/skz258.119 Saetan U., Sangket U., Deachamag P., and Chotigeat W., 2016, Ovarian transcriptome analysis of vitellogenic and non-vitellogenic female banana shrimp (Fenneropenaeus merguiensis), PLoS ONE, 11(10): e0164724. https://doi.org/10.1371/journal.pone.0164724 Sanguanrut P., Munkongwongsiri N., Kongkumnerd J., Thawonsuwan J., Thitamadee S., Boonyawiwat V., Tanasomwang V., Flegel T.W., and Sritunyalucksana K., 2018, A cohort study of 196 Thai shrimp ponds reveals a complex etiology for early mortality syndrome (EMS), Aquaculture, 493: 26-36. https://doi.org/10.1016/J.AQUACULTURE.2018.04.033
RkJQdWJsaXNoZXIy MjQ4ODYzNA==