IJA_2024v14n4

International Journal of Aquaculture, 2024, Vol.14, No.4, 211-220 http://www.aquapublisher.com/index.php/ija 219 Brigljević B.B., Liu J., and Lim H., 2019, Green energy from brown seaweed: sustainable polygeneration industrial process via fast pyrolysis of S. Japonica combined with the Brayton cycle, Energy Conversion and Management, 195: 1244-1254. https://doi.org/10.1016/J.ENCONMAN.2019.05.103 Chu Y.Y., Liu Y., Li J.Y., and Gong Q.L., 2019, Effects of elevated pCO2 and nutrient enrichment on the growth photosynthesis and biochemical compositions of the brown alga Saccharina japonica (Laminariaceae Phaeophyta), PeerJ, 7: e8040. https://doi.org/10.7717/peerj.8040 Duan M.M., Sun X.N., Ma N., Liu Y.L., Luo T.G., Song S., and Ai C.Q., 2019, Polysaccharides fromLaminaria japonica alleviated metabolic syndrome in BALB/c mice by normalizing the gut microbiota, International Journal of Biological Macromolecules, 121: 996-1004. https://doi.org/10.1016/j.ijbiomac.2018.10.087 Huang Y., Guo X.W., Ding Z.H., Chen Y.J., and Hu X., 2020, Environmentally persistent free radicals in biochar derived fromLaminaria japonica grown in different habitats, Journal of Analytical and Applied Pyrolysis, 151: 104941. https://doi.org/10.1016/J.JAAP.2020.104941 Jiang Z.B., Liu J.J., Li S.L., Chen Y., Du P., Zhu Y.L., Liao Y.B., Chen Q.Z., Shou L., Yan X.J., Zeng J.N., and Chen J.F., 2020, Kelp cultivation effectively improves water quality and regulates phytoplankton community in a turbid highly eutrophic bay, The Science of the Total Environment, 707: 135561. https://doi.org/10.1016/j.scitotenv.2019.135561 Jung H.Y., Kim W., Kwon H.J., Yoo D., Nam S.M., Hahn K.R., Yi S.S., Choi J.H., Kim D.W., Yoon Y., and Hwang I., 2020, Physical stress induced reduction of proliferating cells and differentiated neuroblasts is ameliorated by fermented Laminaria japonica extract treatment, Marine Drugs, 18(12): 587. https://doi.org/10.3390/md18120587 Katayama N., Osada Y.G., Mashiko M., Baba Y., Tanaka K., Kusumoto Y., Okubo S., Ikeda H., and Natuhara Y., 2019, Organic farming and associated management practices benefit multiple wildlife taxa: a large‐scale field study in rice paddy landscapes, Journal of Applied Ecology, 56(8): 1970-1981. https://doi.org/10.1111/1365-2664.13446 Kim G.Y., Seo Y.H., Kim I., and Han J.I., 2019, Co-production of biodiesel and alginate fromLaminaria japonica, The Science of the Total Environment, 673: 750-755. https://doi.org/10.1016/j.scitotenv.2019.04.049 Kim J.Y., Kwon Y.M., Kim I.S., Kim J.A., Yu D.Y., Adhikari B., Lee S.S., Choi I., and Cho K.K., 2018, Effects of the brown seaweed Laminaria japonica supplementation on serum concentrations of igg triglycerides and cholesterol and intestinal microbiota composition in rats, Frontiers in Nutrition, 5: 23. https://doi.org/10.3389/fnut.2018.00023 Li H., Yi Y.H., Guo S., Zhang F., Yan H., Zhan Z.L., Zhu Y., and Duan J.A., 2021, Isolation structural characterization and bioactivities of polysaccharides from Laminaria japonica: a review, Food Chemistry, 370: 131010. https://doi.org/10.1016/j.foodchem.2021.131010 Lu X., Dissanayake A.A., Xiao C., Gao J., Zhao M.J., and Nair M., 2021, The edible seaweed Laminaria japonica contains cholesterol analogues that inhibit lipid peroxidation and cyclooxygenase enzymes, PLoS ONE, 17(1): e0258980. https://doi.org/10.1371/journal.pone.0258980 Luan F., Zou J., Rao Z., Ji Y., Lei Z., Peng L., Yang Y., He X., and Zeng N., 2021, Polysaccharides fromLaminaria japonica: an insight into the current research on structural features and biological properties, Food and Function, 12(10): 4254-4283. https://doi.org/10.1039/d1fo00311a Marín T., Wu J., Wu X., Ying Z., Lu Q., Hong Y., Wang X., and Yang W., 2019, Resource use in mariculture: a case study in southeastern China, Sustainability, 11(5): 1396. https://doi.org/10.3390/SU11051396 Sun Q.R., Fang J.X., Wang Z.W., Song Z.X., Geng J.M., Wang D.D., Wang C.T., and Li M., 2022, Two Laminaria japonica fermentation broths alleviate oxidative stress and inflammatory response caused by UVB damage: photoprotective and reparative effects, Marine Drugs, 20(10): 650. https://doi.org/10.3390/md20100650 Swanson A.K., and Fox C.H., 2007, Altered kelp (Laminariales) phlorotannins and growth under elevated carbon dioxide and ultraviolet‐B treatments can influence associated intertidal food webs, Global Change Biology, 13(8): 1696-1709. https://doi.org/10.1111/j.1365-2486.2007.01384.x Wang S.D., Zuo Z.H., Wang Q.J., Zhou A.G., Wang G.Q., Xu G.H., and Zou J., 2023, Replacing starch with resistant starch (Laminaria japonica) improves water quality nitrogen and phosphorus budget and microbial community in hybrid snakehead (Channa maculata ♀ × Channa argus ♂), Water Environment Research, 95(2): e10836. https://doi.org/10.1002/wer.10836 Wang X.X., Zhang L.P., Qin L., Wang Y.F., Chen F.S., Qu C., and Miao J.L., 2022, Physicochemical properties of the soluble dietary fiber fromLaminaria japonica and its role in the regulation of type 2 diabetes mice, Nutrients, 14(2): 329. https://doi.org/10.3390/nu14020329 Wang Z.P., Wang P.K., Ma Y., Lin J.X., Wang C.L., Zhao Y., Zhang X., Huang B., Zhao S., Gao L., Jiang J., Wang H., and Chen W., 2021, Laminaria japonica hydrolysate promotes fucoxanthin accumulation in Phaeodactylum tricornutum, Bioresource Technology, 344: 126117. https://doi.org/10.1016/j.biortech.2021.126117

RkJQdWJsaXNoZXIy MjQ4ODYzNA==