IJMS_2024v14n3

International Journal of Aquaculture, 2024, Vol.14, No.3, 139-153 http://www.aquapublisher.com/index.php/ija 153 Rahi M. L., Mather P., Ezaz T., and Hurwood D., 2019, The molecular basis of freshwater adaptation in prawns: insights from comparative transcriptomics of three Macrobrachiumspecies, Genome Biology and Evolution, 11(4): 1002-1018. https://doi.org/10.1093/gbe/evz045 Szabó S., Peeters E., Várbíró G., Borics G., and Lukács B., 2018, Phenotypic plasticity as a clue for invasion success of the submerged aquatic plant Elodea nuttallii, Plant Biology, 21(1): 54-63. https://doi.org/10.1111/plb.12918 Tong C., Tian F., and Zhao K., 2017, Genomic signature of highland adaptation in fish: a case study in Tibetan Schizothoracinae species, BMC Genomics, 18: 1-9. https://doi.org/10.1186/s12864-017-4352-8 Tsagkogeorga G., McGowen M.G., Davies K.T., Jarman S., Polanowski A., Bertelsen M.F., and Rossiter S.J., 2015, A phylogenomic analysis of the role and timing of molecular adaptation in the aquatic transition of cetartiodactyl mammals, Royal Society Open Science, 2(9): 150156. https://doi.org/10.1098/rsos.150156 Van Buskirk J., 2017, Spatially heterogeneous selection in nature favors phenotypic plasticity in anuran larvae, Evolution, 71(6): 1670-1685. https://doi.org/10.1111/evo.13236 Wang Y., and Guo B., 2019, Adaption to extreme environments: a perspective from fish genomics, Reviews in Fish Biology and Fisheries, 29: 735-747. https://doi.org/10.1007/s11160-019-09577-9 Weigand H., Weiss M., Cai H., Li Y., Yu L., Zhang C., and Leese F., 2018, Fishing in troubled waters: Revealing genomic signatures of local adaptation in response to freshwater pollutants in two macroinvertebrates, The Science of the Total Environment, 633: 875-891. https://doi.org/10.1016/j.scitotenv.2018.03.109 Wersebe M. J., and Weider L., 2022, Resurrection genomics provides molecular and phenotypic evidence of rapid adaptation to salinization in a keystone aquatic species, bioRxiv, 120(6): e2217276120. https://doi.org/10.1101/2022.07.22.501152 Wright P., and Turko A., 2016, Amphibious fishes: evolution and phenotypic plasticity, Journal of Experimental Biology, 219: 2245-2259. https://doi.org/10.1242/jeb.126649 Xu Z., Gan L., Li T., Xu C., Chen K., Wang X., Qin J., and Chen L., 2015, Transcriptome profiling and molecular pathway analysis of genes in association with salinity adaptation in nile tilapia Oreochromis niloticus, PLoS ONE, 10(8): e0136506. https://doi.org/10.1371/journal.pone.0136506 Yang G., Tian R., Xu S., and Ren W., 2019, Molecular adaptation mechanism of secondary aquatic life in cetaceans, Scientia Sinica Vitae, 49: 380-391. https://doi.org/10.1360/N052018-00211 Yang L., Zhao Z., Luo D., Liang M., and Zhang Q., 2022, Global metabolomics of fireflies (Coleoptera: Lampyridae) explore metabolic adaptation to fresh water in insects, Insects, 118(37): e2106080118. https://doi.org/10.3390/insects13090823 Yuan Y., Zhang Y., Zhang P., Liu C., Wang J., Gao H., Hoelzel A. R., Seim I., Lv M., Lin M., Dong L., Gao H., Yang Z., Caruso F., Lin W., da Fonseca R. D., Wang D., Wang X., Rasmussen M., Liu M., Zheng J., Zhao L., Campos P., Kang H., Iversen M., Song Y., Guo X., Guo J., Qin Y., Pan S., Xu Q., Meng L., A Y., Liu S., Lee S., Liu X., Xu X., Yang H., Fan G., Wang K., and Li S., 2021, Comparative genomics provides insights into the aquatic adaptations of mammals, Proceedings of the National Academy of Sciences of the United States of America, 118(37): e2106080118. https://doi.org/10.1073/pnas.2106080118 Zhang Q.L., Li H.W., Dong Z.X., Yang X.J., Lin L., Chen J.Y., and Yuan M.L., 2020, Comparative transcriptomic analysis of fireflies (Coleoptera: Lampyridae) to explore the molecular adaptations to fresh water, Molecular Ecology, 29: 2676-2691. https://doi.org/10.1111/mec.15504

RkJQdWJsaXNoZXIy MjQ4ODYzNA==