IJA_2024v14n2

International Journal of Aquaculture, 2024, Vol.14, No.2, 62-72 http://www.aquapublisher.com/index.php/ija 71 Chen M., Teng W., Zhao L., Hu C. Zhou Y., Han B., Song L., and Shu W., 2020, Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation, The ISME Journal, 15: 211-227. https://doi.org/10.1038/s41396-020-00775-z Cock J., Sterck L., Rouzé P., Scornet D., Allen A., Amoutzias G., and Wincker P., 2010, The ectocarpus genome and the independent evolution of multicellularity in brown algae, Nature, 465: 617-621. https://doi.org/10.1038/nature09016. Foflonker F., Mollegard D., Ong M., Yoon H., and Bhattacharya D., 2018, Genomic analysis of picochlorum species reveals how microalgae may adapt to variable environments, Molecular Biology and Evolution, 35: 2702-2711. https://doi.org/10.1093/molbev/msy167 Goodenough U., 2022, Discovery of sex in an extremophilic red alga, Proceedings of the National Academy of Sciences of the United States of America, 119(44): e2216012119. https://doi.org/10.1073/pnas.2216012119 Hirooka S., Hirose Y., Kanesaki Y., Higuchi S., Fujiwara T., Onuma R., Era A., Ohbayashi R., Uzuka A., Nozaki H., Yoshikawa H., and Miyagishima S., 2017, Acidophilic green algal genome provides insights into adaptation to an acidic environment, Proceedings of the National Academy of Sciences, 114: E8304-E8313. https://doi.org/10.1073/pnas.1707072114 Jancek S., Gourbière S., Moreau H., and Piganeau G., 2008, Clues about the genetic basis of adaptation emerge from comparing the proteomes of two Ostreococcus ecotypes (Chlorophyta Prasinophyceae), Molecular Biology and Evolution, 25(11): 2293-3000. https://doi.org/10.1093/molbev/msn168 Khan A., Kausar H., Jaferi S., Drouet S., Hano C., Abbasi B., and Anjum S., 2020, An insight into the algal evolution and genomics, Biomolecules, 10(11): 1524. https://doi.org/10.3390/biom10111524 López D., Casero D., Cokus S., Merchant S., and Pellegrini M., 2011, Algal functional annotation tool: a web-based analysis suite to functionally interpret large gene lists using integrated annotation and expression data, BMC Bioinformatics, 12: 282. https://doi.org/10.1186/1471-2105-12-282 Matsuzaki M., Misumi O., Shin-I T., Maruyama S., Takahara M., Miyagishima S., Mori T., Nishida K., Yagisawa F., Nishida K., Yoshida Y., Nishimura Y., Nakao S., Kobayashi T., Momoyama Y., Higashiyama T., Minoda A., Sano M., Nomoto H., Oishi K., Hayashi H., Ohta F., Nishizaka S., Haga S., Miura S., Morishita T., Kabeya Y., Terasawa K., Suzuki Y., Ishii Y., Asakawa S., Takano H., Ohta N., Kuroiwa H., Tanaka K., Shimizu N., Sugano S., Sato N., Nozaki H., Ogasawara N., Kohara Y., and Kuroiwa T., 2004, Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D, Nature, 428: 653-657. https://doi.org/10.1038/nature02398 Meng F., Song J., Zhou J., and Cai Z., 2019, Transcriptomic profile and sexual reproduction-relevant genes of Alexandrium minutum in response to nutritional deficiency, Frontiers in Microbiology, 10: 2629. https://doi.org/10.3389/fmicb.2019.02629 Morse D., Tse S., and Lo S., 2018, Exploring dinoflagellate biology with high-throughput proteomics, Harmful Algae, 75: 16-26. https://doi.org/10.1016/j.hal.2018.03.010 Petersen J., Rredhi A., Szyttenholm J., Oldemeyer S., Kottke T., and Mittag M., 2021, The world of algae reveals a broad variety of cryptochrome properties and functions, Frontiers in Plant Science, 12: 766509. https://doi.org/10.3389/fpls.2021.766509 Raven J., and Geider R., 2003, Adaptation acclimation and regulation in algal photosynthesis, Dordrecht: Springer Netherlands, 385-412. https://doi.org/10.1007/978-94-007-1038-2_17 Reid N., Proestou D., Clark B., Warren W., Colbourne J., Shaw J., Karchner S., Hahn M., Nacci D., Oleksiak M., Crawford D., and Whitehead A., 2016, The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish, Science, 354: 1305-1308. https://doi.org/10.1126/science.aah4993 Rossoni A., and Weber A., 2019, Systems biology of cold adaptation in the polyextremophilic red alga Galdieria sulphuraria, Frontiers in Microbiology, 10: 927. https://doi.org/10.3389/fmicb.2019.00927 Stapley J., Reger J., Feulner P., Smadja C., Galindo J., Ekblom R., Bennison C., Ball A., Beckerman A., and Slate J., 2010, Adaptation genomics: the next generation, Trends in Ecology and Evolution, 25 (2): 705. https://doi.org/10.1016/j.tree.2010.09.002 Teng L., Fan X., Xu D., Zhang X., Mock T., and Ye N., 2017, Identification of genes under positive selection reveals differences in evolutionary adaptation between brown-algal species, Frontiers in Plant Science, 8: 1429. https://doi.org/10.3389/fpls.2017.01429 Tian Y., Wen H., Qi X., Zhang X., Sun Y., Li J., He F., Zhang M., Zhang K., Yang W., Huang Z., Ren Y., and Li Y., 2020, Alternative splicing (AS) mechanism plays important roles in response to different salinity environments in spotted sea bass, International Journal of Biological Macromolecules, 155: 50-60. https://doi.org/10.1016/j.ijbiomac.2020.03.178

RkJQdWJsaXNoZXIy MjQ4ODYzNA==