International Journal of Molecular Zoology, 2024, Vol.14, No.6, 297-304 http://animalscipublisher.com/index.php/ijmz 303 Canuti M., Mira F., Sorensen R., Rodrigues B., Bouchard É., Walzthoni N., Hopson M., Gilroy C., Whitney H., and Lang A., 2022, Distribution and diversity of dog parvoviruses in wild, free-roaming, and domestic canids of Newfoundland and labrador, Canada, Transboundary and Emerging Diseases, 69(5): e2694-e2705. Charpentier T., Petit T., Guidetti M., and Goy-Thollot I., 2020, The dog erythrocyte antigen 1 blood group in nondomesticated canids and compatibility testing between domestic dog and nondomesticated canid blood, Journal of Veterinary Internal Medicine, 34: 2365-2373. https://doi.org/10.1111/jvim.15950 Chen C., 2024, Interaction between pathogenic mechanism of Salmonella and host immune system, Molecular Microbiology Research, 14(1): 1-9. http://dx.doi.org/10.5376/mmr.2024.14.0001 Fitzgerald K., and Kagan J., 2020, Toll-like receptors and the control of immunity, Cell, 180(6): 1044-1066. https://doi.org/10.1016/j.cell.2020.02.041 Gingrich A., Reiter T., Judge S., York D., Yanagisawa M., Razmara A., Sturgill I., Basmaci U., Brady R., Stoffel K., Murphy W., Rebhun R., Brown C., and Canter R., 2021, Comparative immunogenomics of canine natural killer cells as immunotherapy target, Frontiers in Immunology, 12: 670309. https://doi.org/10.3389/fimmu.2021.670309 Koch I., Clark M., Thompson M., Deere-Machemer K., Wang J., Duarte L., Gnanadesikan G., McCoy E., Rubbi L., Stahler D., Pellegrini M., Ostrander E., Wayne R., Sinsheimer J., and Vonholdt B., 2016, The concerted impact of domestication and transposon insertions on methylation patterns between dogs and grey wolves, Molecular Ecology, 25(8): 1838-1855. https://doi.org/10.1111/mec.13480 Lin X.F., 2024, Mechanisms of immune evasion by african swine fever virus: an integrated review, Molecular Pathogens, 15(4): 209-218. http://dx.doi.org/10.5376/mp.2024.15.0020 Liu Y., Wang L., Xu T., Guo X., Li Y., Yin T., Yang H., Hu Y., Adeola A., Sanke O., Otecko N., Wang M., Ma Y., Charles O., Sinding M., Gopalakrishnan S., Samaniego J., Hansen A., Fernandes C., Gaubert P., Budd J., Dawuda P., Rueness E., Jiang L., Zhai W., Gilbert T., Peng M., Qi X., Wang G., and Zhang Y., 2018, Whole‐genome sequencing of African dogs provides insights into adaptations against tropical parasites, Molecular Biology and Evolution, 35: 287-298. https://doi.org/10.1093/molbev/msx258 Marsden C., Vecchyo D., O’Brien D., Taylor J., Ramírez O., Vilà C., Marquès-Bonet T., Schnabel R., Wayne R., and Lohmueller K., 2015, Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs, Proceedings of the National Academy of Sciences, 113: 152-157. https://doi.org/10.1073/pnas.1512501113 Migalska M., Sebastián Á., and Radwan J., 2019, Major histocompatibility complex class I diversity limits the repertoire of T cell receptors, Proceedings of the National Academy of Sciences, 116: 5021-5026. https://doi.org/10.1073/pnas.1807864116 Minias P., Drzewińska-Chańko J., and Włodarczyk R., 2021, Evolution of innate and adaptive immune genes in a non-model waterbird, the common tern, Infection, Genetics and Evolution, 95: 105069. https://doi.org/10.1016/j.meegid.2021.105069 Oh W., Kim A., Dhawan D., Kirkham P.M., Knapp D.W., and Lim S.O., 2023, Development of a canine PD-L1 antibody and caninized PD-L1 mouse model: an essential translational research tool to raise the success rate of immunotherapy in humans, Cancer Research, 83(7_Supplement): 2969-2969. https://doi.org/10.1158/1538-7445.am2023-2969 Ostrander E., Wang G., Larson G., Vonholdt B., Davis B., Jagannathan V., Hitte C., Wayne R., and Zhang Y., 2019, Dog10K: an international sequencing effort to advance studies of canine domestication, phenotypes and health, National Science Review, 6: 810-824. https://doi.org/10.1093/nsr/nwz049 Pilot M., Malewski T., Moura A., Grzybowski T., Oleński K., Kamiński S., Fadel F., Alagaili A., Mohammed O., and Bogdanowicz W., 2016, Diversifying selection between pure-breed and free-breeding dogs inferred from genome-wide SNP analysis, G3: Genes|Genomes|Genetics, 6: 2285-2298. https://doi.org/10.1534/g3.116.029678 Porter S., Hartwig A., Bielefeldt-Ohmann H., Bosco-Lauth A., and Root J., 2022, Susceptibility of wild canids to SARS-CoV-2, Emerging Infectious Diseases, 28: 1852-1855. https://doi.org/10.3201/eid2809.220223 Quéméré E., Galan M., Cosson J., Klein F., Aulagnier S., Gilot‐Fromont E., Merlet J., Bonhomme M., Hewison A., and Charbonnel N., 2015, Immunogenetic heterogeneity in a widespread ungulate: the European roe deer (Capreolus capreolus), Molecular Ecology, 24(15): 3873-3887. https://doi.org/10.1111/mec.13292 Quéméré E., Hessenauer P., Galan M., Fernandez M., Merlet J., Chaval Y., Morellet N., Verheyden H., Gilot‐Fromont E., and Charbonnel N., 2021, Pathogen‐mediated selection favours the maintenance of innate immunity gene polymorphism in a widespread wild ungulate, Journal of Evolutionary Biology, 34: 1156-1166. https://doi.org/10.1111/jeb.13876 Ramírez O., Olalde I., Berglund J., Lorente-Galdos B., Hernandez-Rodriguez J., Quilez J., Webster M., Wayne R., Lalueza-Fox C., Vilà C., and Marquès-Bonet T., 2014, Analysis of structural diversity in wolf-like canids reveals post-domestication variants, BMC Genomics, 15: 1-10. https://doi.org/10.1186/1471-2164-15-465
RkJQdWJsaXNoZXIy MjQ4ODYzNA==