International Journal of Molecular Zoology 2024, Vol.14, No.5, 255-264 http://animalscipublisher.com/index.php/ijmz 264 Sammad A., Wang Y., Umer S., Hu L., Khan I., Khan A., Ahmad B., and Wang Y., 2020, Nutritional physiology and biochemistry of dairy cattle under the influence of heat stress: consequences and opportunities, Animals, 10(5): 793. https://doi.org/10.3390/ani10050793 Singh S., Singh T., Koli P., Anele U., Bhadoria B., Choudhary M., and Ren Y., 2023, Nutrient and rumen fermentation studies of Indian pasture legumes for sustainable animal feed utilisation in semiarid areas, Animals, 13(23): 3676. https://doi.org/10.3390/ani13233676 So S., Cherdthong A., and Wanapat M., 2021, Growth performances, nutrient digestibility, ruminal fermentation and energy partition of Thai native steers fed exclusive rice straw and fermented sugarcane bagasse with Lactobacillus, cellulase and molasses, Journal of Animal Physiology and Animal Nutrition, 106(1): 45-54. https://doi.org/10.1111/jpn.13563 Steinwidder A., Rohrer H., Pfister R., Gallnböck M., Podstatzky L., and Gasteiner J., 2021, Effects of concentrate supplementation strategies during the transition period and milking frequency in early lactation on seasonal winter-calving organic dairy cows, Livestock Science, 250: 104595. https://doi.org/10.1016/J.LIVSCI.2021.104595 Ungerfeld E., 2018, Inhibition of rumen methanogenesis and ruminant productivity: a meta-analysis, Frontiers in Veterinary Science, 5: 113. https://doi.org/10.3389/fvets.2018.00113 VandeHaar M., Armentano L., Weigel K., Spurlock D., Tempelman R., and Veerkamp R., 2016, Harnessing the genetics of the modern dairy cow to continue improvements in feed efficiency, Journal of Dairy Science, 99(6): 4941-4954. https://doi.org/10.3168/jds.2015-10352
RkJQdWJsaXNoZXIy MjQ4ODYzNA==