IJMZ_2024v14n4

International Journal of Molecular Zoology 2024, Vol.14, No.4, 222-232 http://animalscipublisher.com/index.php/ijmz 230 Cheng C., and Xuan Z., 2020, Molecular origins and mechanisms of fish antifreeze evolution, Antifreeze Proteins Volume 1: Environment, Systematics and Evolution, pp.275-313. https://doi.org/10.1007/978-3-030-41929-5_9 Cziko P., Devries A., Evans C., and Cheng C., 2014, Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming, Proceedings of the National Academy of Sciences, 111(40): 14583-14588. https://doi.org/10.1073/pnas.1410256111 PMid:25246548 PMCid:PMC4209995 Elmer K., 2016, Genomic tools for new insights to variation, adaptation, and evolution in the salmonid fishes: a perspective for charr, Hydrobiologia, 783: 191-208. https://doi.org/10.1007/s10750-015-2614-5 Fertin G., and Rusu I., 2011, Computing genomic distances: an algorihtmic viewpoint, Algorithms in Computational Molecular Biology: Techniques, Approaches and Applications, pp.773-798. https://doi.org/10.1002/9780470892107.ch34 Graham L., Hobbs R., Fletcher G., and Davies P., 2013, Helical antifreeze proteins have independently evolved in fishes on four occasions, PLoS ONE, 8(12): e81285. https://doi.org/10.1371/journal.pone.0081285 PMid:24324684 PMCid:PMC3855684 Hemmer-Hansen J., Therkildsen N., and Pujolar J., 2014, Population genomics of marine fishes: next-generation prospects and challenges, The Biological Bulletin, 227(2): 117-132. https://doi.org/10.1086/BBLv227n2p117 PMid:25411371 Hotaling S., Desvignes T., Sproul J., Lins L., and Kelley J., 2022, Pathways to polar adaptation in fishes revealed by long-read sequencing, Molecular Ecology, 32(6): 1381-1397. https://doi.org/10.1111/mec.16501 PMid:35561000 Hughes L., Ortí G., Huang Y., Sun Y., Baldwin C., Thompson A., Arcila D., Betancur-R R., Li C., Becker L., Bellora N., Zhao X., Li X., Wang M., Fang C., Xie B., Zhou Z., Huang H., Chen S., Venkatesh B., and Shi Q., 2018, Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data, Proceedings of the National Academy of Sciences, 115(24): 6249-6254. https://doi.org/10.1073/pnas.1719358115 PMid:29760103 PMCid:PMC6004478 Jacobsen M., Fonseca R., Bernatchez L., and Hansen M., 2016, Comparative analysis of complete mitochondrial genomes suggests that relaxed purifying selection is driving high nonsynonymous evolutionary rate of the NADH2 gene in whitefish (Coregonus ssp.), Molecular Phylogenetics and Evolution, 95: 161-170. https://doi.org/10.1016/j.ympev.2015.11.008 PMid:26654959 Kautt A., Kratochwil C., Nater A., Machado-Schiaffino G., Olave M., Henning F., Torres‐Dowdall J., Härer A., Hulsey C., Franchini P., Pippel M., Myers E., and Meyer A., 2020, Contrasting signatures of genomic divergence during sympatric speciation, Nature, 588(7836): 106-111. https://doi.org/10.1038/s41586-020-2845-0 PMid:33116308 PMCid:PMC7759464 Krabbenhoft T., and Turner T., 2017, Comparative transcriptomics of cyprinid minnows and carp in a common wild setting: a resource for ecological genomics in freshwater communities, DNA Research, 25(1): 11-23. https://doi.org/10.1093/dnares/dsx034 PMid:28985264 PMCid:PMC5824830 Lappin F., Shaw R., and Macqueen D., 2016, Targeted sequencing for high-resolution evolutionary analyses following genome duplication in salmonid fish: Proof of concept for key components of the insulin-like growth factor axis, Marine Genomics, 30: 15-26. https://doi.org/10.1016/j.margen.2016.06.003 PMid:27346185 Lee J., Kim Y., Park K., Shin S., Kim H., Song Y., and Park H., 2011, Molecular and comparative analyses of type IV antifreeze proteins (AFPIVs) from two Antarctic fishes, Pleuragramma antarcticum and Notothenia coriiceps, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 159(4): 197-205. https://doi.org/10.1016/j.cbpb.2011.04.006 PMid:21571089 Li M.M., 2024, Unraveling the genetic mechanisms of algal adaptation: insights from genomics and transcriptomics, International Journal of Aquaculture, 14(2): 62-72. https://doi.org/10.5376/ija.2024.14.0008 Mazzuchelli J., Kocher T., Yang F., and Martins C., 2012, Integrating cytogenetics and genomics in comparative evolutionary studies of cichlid fish, BMC Genomics, 13: 463. https://doi.org/10.1186/1471-2164-13-463 PMid:22958299 PMCid:PMC3463429

RkJQdWJsaXNoZXIy MjQ4ODYzNA==