International Journal of Molecular Zoology 2024, Vol.14, No.4, 197-210 http://animalscipublisher.com/index.php/ijmz 207 Acknowledgments AnimalSci Publisher thanks the anonymous peer reviewers for their feedback on the manuscript. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Ahn D., Kang S., and Park H., 2016, Transcriptome analysis of immune response genes induced by pathogen agonists in the Antarctic bullhead notothen Notothenia coriiceps, Fish & Shellfish Immunology, 55: 315-322. https://doi.org/10.1016/j.fsi.2016.06.004 PMid:27276114 Ansaloni F., Gerdol M., Torboli V., Fornaini N., Greco S., Giulianini P., Coscia M., Miccoli A., Santovito G., Buonocore F., Scapigliati G., and Pallavicini A., 2021, Cold adaptation in antarctic notothenioids: comparative transcriptomics reveals novel insights in the peculiar role of gills and highlights signatures of cobalamin deficiency, International Journal of Molecular Sciences, 22(4): 1812. https://doi.org/10.3390/ijms22041812 PMid:33670421 PMCid:PMC7918649 Boehm T., 2012, Evolution of vertebrate immunity, Current Biology, 22(17): R722-R732. https://doi.org/10.1016/j.cub.2012.07.003 PMid:22975003 Boehm T., Hirano M., Holland S., Das S., Schorpp M., and Cooper M., 2018, Evolution of alternative adaptive immune systems in vertebrates, Annual Review of Immunology, 36(1): 19-42. https://doi.org/10.1146/annurev-immunol-042617-053028 PMid:29144837 Boehm T., Iwanami N., and Hess I., 2012, Evolution of the immune system in the lower vertebrates, Annual Review of Genomics and Human Genetics, 13(1): 127-149. https://doi.org/10.1146/annurev-genom-090711-163747 PMid:22703179 Bowers E., Hodges C., Forsman A., Vogel L., Masters B., Johnson B., Johnson L., Thompson C., and Sakaluk S., 2014, Neonatal body condition, immune responsiveness, and hematocrit predict longevity in a wild bird population, Ecology, 95(11): 3027-3034. https://doi.org/10.1890/14-0418.1 PMid:25505800 PMCid:PMC4260523 Campos J., Wu Z., Rudich Z., Soo S., Mistry M., Ferreira J., Blackwell T., and Raamsdonk J., 2021, Mild mitochondrial impairment enhances innate immunity and longevity through ATFS‐1 and p38 signaling, EMBO Reports, 22(12): e52964. https://doi.org/10.15252/embr.202152964 PMid:34617666 PMCid:PMC8647147 Costantini D., 2022, A meta-analysis of impacts of immune response and infection on oxidative status in vertebrates, Conservation Physiology, 10(1): coac018. https://doi.org/10.1093/conphys/coac018 PMid:35492421 PMCid:PMC9040321 Dishaw L., Haire R., and Litman G., 2012, The amphioxus genome provides unique insight into the evolution of immunity, Briefings in Functional Genomics, 11(2): 167-176. https://doi.org/10.1093/bfgp/els007 PMid:22402506 PMCid:PMC3310213 Edrey Y., Hanes M., Pinto M., Mele J., and Buffenstein R., 2011, Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research, ILAR Journal, 52(1): 41-53. https://doi.org/10.1093/ilar.52.1.41 PMid:21411857 Fabian D., Fuentealba M., Dönertaş H., Partridge L., and Thornton J., 2021, Functional conservation in genes and pathways linking ageing and immunity, Immunity & Ageing, 18(1): 23. https://doi.org/10.1186/s12979-021-00232-1 PMid:33990202 PMCid:PMC8120713 Fabian D., Garschall K., Klepsatel P., Santos-Matos G., Sucena É., Kapun M., Lemaître B., Schlötterer C., Arking R., and Flatt T., 2018, Evolution of longevity improves immunity in Drosophila, Evolution Letters, 2(6): 567-579. https://doi.org/10.1002/evl3.89 PMid:30564440 PMCid:PMC6292704
RkJQdWJsaXNoZXIy MjQ4ODYzNA==