IJMZ_2024v14n3

International Journal of Molecular Zoology 2024, Vol.14, No.3, 182-196 http://animalscipublisher.com/index.php/ijmz 195 Ribeiro Â., Puetz L., Pattinson N., Dalén L., Deng Y., Zhang G., Fonseca R., Smit B., and Gilbert M., 2019, 31° South: The physiology of adaptation to arid conditions in a passerine bird, Molecular Ecology, 28(16): 3709-3721. https://doi.org/10.1111/mec.15176 PMid:31291502 Ritzel K., and Gallo T., 2020, Behavior change in urban mammals: a systematic review, Frontiers in Ecology and Evolution, 8: 576665. https://doi.org/10.3389/fevo.2020.576665 Rocha J., Godinho R., Brito J., and Nielsen R., 2021, Life in deserts: the genetic basis of mammalian desert adaptation, Trends in Ecology & Evolution, 36(7): 637-650. https://doi.org/10.1016/j.tree.2021.03.007 PMid:33863602 Romero-Mujalli D., Jeltsch F., and Tiedemann R., 2018, Individual-based modeling of eco-evolutionary dynamics: state of the art and future directions, Regional Environmental Change, 19: 1-12. https://doi.org/10.1007/s10113-018-1406-7 Santini L., González‐Suárez M., Russo D., Gonzalez-Voyer A., Hardenberg A., and Ancillotto L., 2018, One strategy does not fit all: determinants of urban adaptation in mammals, Ecology Letters, 22(2): 365-376. https://doi.org/10.1111/ele.13199 PMid:30575254 PMCid:PMC7379640 Schradin C., and Hayes L., 2017, A synopsis of long-term field studies of mammals: achievements, future directions, and some advice, Journal of Mammalogy, 98(3): 670-677. https://doi.org/10.1093/jmammal/gyx031 Sharma V., Hecker N., Roscito J., Foerster L., Langer B., and Hiller M., 2018, A genomics approach reveals insights into the importance of gene losses for mammalian adaptations, Nature Communications, 9(1): 1215. https://doi.org/10.1038/s41467-018-03667-1 PMid:29572503 PMCid:PMC5865188 Shukla I., Kilpatrick A., and Beltran R., 2021, Variation in resting strategies across trophic levels and habitats in mammals, Ecology and Evolution, 11(21): 14405-14415. https://doi.org/10.1002/ece3.8073 PMid:34765115 PMCid:PMC8571619 Silber G., Lettrich M., Thomas P., Baker J., Baumgartner M., Becker E., Boveng P., Dick D., Fiechter J., Forcada J., Forney K., Griffis R., Hare J., Hobday A., Howell D., Laidre K., Mantua N., Quakenbush L., Santora J., Stafford K., Spencer P., Stock C., Sydeman W., Houtan K., and Waples R., 2017, Projecting marine mammal distribution in a changing climate, Frontiers in Marine Science, 4: 413. https://doi.org/10.3389/fmars.2017.00413 Snyder‐Mackler N., and Lea A., 2018, Functional genomic insights into the environmental determinants of mammalian fitness, Current Opinion in Genetics & Development, 53: 105-112. https://doi.org/10.1016/j.gde.2018.08.001 PMid:30142491 PMCid:PMC6296864 Stajic D., and Jansen L., 2021, Empirical evidence for epigenetic inheritance driving evolutionary adaptation, Philosophical Transactions of the Royal Society B, 376(1826): 20200121. https://doi.org/10.1098/rstb.2020.0121 PMid:33866813 PMCid:PMC8059598 Teitelbaum C., Sirén A., Coffel E., Foster J., Frair J., Hinton J., Horton R., Kramer D., Lesk C., Raymond C., Wattles D., Zeller K., and Morelli T., 2021, Habitat use as indicator of adaptive capacity to climate change, Diversity and Distributions, 27(4): 655-667. https://doi.org/10.1111/ddi.13223 Trubenová B., Krejca M., Lehre P., and Kötzing T., 2019, Surfing on the seascape: adaptation in a changing environment, Evolution, 73(7): 1356-1374. https://doi.org/10.1111/evo.13784 PMid:31206653 PMCid:PMC6771940 Vogt G., 2017, Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: insights from clonal, invasive, polyploid, and domesticated animals, Environmental Epigenetics, 3(1): dvx002. https://doi.org/10.1093/eep/dvx002 PMid:29492304 PMCid:PMC5804542 Vogt G., 2022, Environmental adaptation of genetically uniform organisms with the help of epigenetic mechanisms-an insightful perspective on ecoepigenetics, Epigenomes, 7(1): 1. https://doi.org/10.3390/epigenomes7010001 PMid:36648862 PMCid:PMC9844400 Walker W., Meléndez-Fernández O., Nelson R., and Reiter R., 2019, Global climate change and invariable photoperiods: a mismatch that jeopardizes animal fitness, Ecology and Evolution, 9(17): 10044-10054. https://doi.org/10.1002/ece3.5537 PMid:31534712 PMCid:PMC6745832

RkJQdWJsaXNoZXIy MjQ4ODYzNA==