IJMZ_2024v14n2

International Journal of Molecular Zoology 2024, Vol.14, No.2, 111-127 http://animalscipublisher.com/index.php/ijmz 126 Rittenhouse J., Robart A., and Watts H., 2019, Variation in chronotype is associated with migratory timing in a songbird, Biology Letters, 15(8): 20190453. https://doi.org/10.1098/rsbl.2019.0453 PMid:31455169 PMCid:PMC6731483 Ruegg K., Anderson E., Somveille M., Bay R., Whitfield M., Paxton E., and Smith T., 2021, Linking climate niches across seasons to assess population vulnerability in a migratory bird, Global Change Biology, 27(15): 3519-3531. https://doi.org/10.1111/gcb.15639 PMid:33844878 Sharma A., Singh D., Gupta P., Bhardwaj S., Kaur I., and Kumar V., 2021, Molecular changes associated with migratory departure from wintering areas in obligate songbird migrants, Journal of Experimental Biology, 224(11): jeb242153. https://doi.org/10.1242/jeb.242153 PMid:34105726 Sharma A., Singh D., Malik S., Gupta N., Rani S., and Kumar V., 2018, Difference in control between spring and autumn migration in birds: insight from seasonal changes in hypothalamic gene expression in captive buntings, Proceedings of the Royal Society B, 285(1885): 20181531. https://doi.org/10.1098/rspb.2018.1531 PMid:30158302 PMCid:PMC6125905 Sharma A., Tripathi V., and Kumar V., 2022, Control and adaptability of seasonal changes in behavior and physiology of latitudinal avian migrants: insights from laboratory studies in Palearctic-Indian migratory buntings, Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 337(9-10): 902-918. https://doi.org/10.1002/jez.2631 PMid:35677956 Shochat T., and Tauber E., 2021, Daily rhythms of the body and the biological clock, Frontiers for Young Minds, 9: 645707. https://doi.org/10.3389/frym.2021.645707 Soriano‐Redondo A., Gutiérrez J., Hodgson D., and Bearhop S., 2020, Migrant birds and mammals live faster than residents, Nature Communications, 11(1): 5719. https://doi.org/10.1038/s41467-020-19256-0 PMid:33203869 PMCid:PMC7673136 Talal S., Parmar S., Osgood G., Harrison J., and Cease A., 2023, High carbohydrate consumption increases lipid storage and promotes migratory flight, Journal of Experimental Biology, 226(3): jeb245351. https://doi.org/10.1242/jeb.245351 PMid:36655788 Taylor B., Lohmann K., Havens L., Lohmann C., and Granger J., 2021, Long-distance transequatorial navigation using sequential measurements of magnetic inclination angle, Journal of the Royal Society Interface, 18(174): 20200887. https://doi.org/10.1098/rsif.2020.0887 PMid:33402018 PMCid:PMC7879752 Tyagi T., and Bhardwaj S., 2021, Orientation cues and mechanisms used during avian navigation: a review, Journal of Applied and Natural Science, 13(2): 627-640. https://doi.org/10.31018/jans.v13i2.2684 Ueda H., 2018, Sensory mechanisms of natal stream imprinting and homing in Oncorhynchus spp., Journal of Fish Biology, 95(1): 293-303. https://doi.org/10.1111/jfb.13775 PMid:30101534 Vernasco B., Emmerson M., Gilbert E., Sewall K., and Watts H., 2021, Migratory state and patterns of steroid hormone regulation in the pectoralis muscle of a nomadic migrant, the pine siskin (Spinus pinus), General and Comparative Endocrinology, 309: 113787. https://doi.org/10.1016/j.ygcen.2021.113787 PMid:33862052 Warrant E., 2021, Unravelling the enigma of bird magnetoreception, Nature, 594(7864): 497-498. https://doi.org/10.1038/d41586-021-01596-6 PMid:34163048 Watts H., Cornelius J., Fudickar A., Pérez J., and Ramenofsky M., 2018, Understanding variation in migratory movements: a mechanistic approach, General and Comparative Endocrinology, 256: 112-122. https://doi.org/10.1016/j.ygcen.2017.07.027 PMid:28756245 Weeks B., Willard D., Zimova M., Ellis A., Witynski M., Hennen M., and Winger B., 2019, Shared morphological consequences of global warming in North American migratory birds, bioRxiv, 2019: 610329. https://doi.org/10.1101/610329 Wynn J., Padget O., Mouritsen H., Perrins C., and Guilford T., 2020, Natal imprinting to the Earth’s magnetic field in a pelagic seabird, Current Biology, 30(14): 2869-2873, E2. https://doi.org/10.1016/j.cub.2020.05.039 PMid:32559442

RkJQdWJsaXNoZXIy MjQ4ODYzNA==