IJMZ_2024v14n2

International Journal of Molecular Zoology 2024, Vol.14, No.2, 111-127 http://animalscipublisher.com/index.php/ijmz 125 Hsiung A., Boyle W., Cooper R., and Chandler R., 2018, Altitudinal migration: ecological drivers, knowledge gaps, and conservation implications, Biological Reviews, 93(4): 2049-2070. https://doi.org/10.1111/brv.12435 PMid:29877015 Jahn A., Cereghetti J., Cueto V., Hallworth M., Levey D., Marini M., Masson D., Pizo M., Sarasola J., and Tuero D., 2019, Breeding latitude predicts timing but not rate of spring migration in a widespread migratory bird in South America, Ecology and Evolution, 9(10): 5752-5765. https://doi.org/10.1002/ece3.5159 PMid:31160996 PMCid:PMC6540664 Johnsen S., Lohmann K., and Warrant E., 2020, Animal navigation: a noisy magnetic sense? Journal of Experimental Biology, 223(18): jeb164921. https://doi.org/10.1242/jeb.164921 PMid:32967977 Keller B., Putman N., Grubbs R., Portnoy D., and Murphy T., 2021, Map-like use of Earth’s magnetic field in sharks, Current Biology, 31(13): 2881-2886, E3. https://doi.org/10.1016/j.cub.2021.03.103 PMid:33961785 Liedvogel M., Åkesson S., and Bensch S., 2011, The genetics of migration on the move, Trends in Ecology & Evolution, 26(11): 561-569. https://doi.org/10.1016/j.tree.2011.07.009 PMid:21862171 MacPherson M., Jahn A., Murphy M., Kim D., Cueto V., Tuero D., and Hill E., 2018, Follow the rain? Environmental drivers of Tyrannus migration across the New World, The Auk, 135(4): 881-894. https://doi.org/10.1642/AUK-17-209.1 Mazzoccoli G., 2022, Chronobiology meets quantum biology: a new paradigm overlooking the horizon? Frontiers in Physiology, 13: 892582. https://doi.org/10.3389/fphys.2022.892582 PMid:35874510 PMCid:PMC9296773 McKinnon E., and Love O., 2018, Ten years tracking the migrations of small landbirds: lessons learned in the golden age of bio-logging, The Auk: Ornithological Advances, 135(4): 834-856. https://doi.org/10.1642/AUK-17-202.1 Merlin C., and Liedvogel M., 2019, The genetics and epigenetics of animal migration and orientation: birds, butterflies and beyond, Journal of Experimental Biology, 222(Suppl_1): jeb191890. https://doi.org/10.1242/jeb.191890 PMid:30728238 Mondain‐Monval T., Amos M., Chapman J., MacColl A., and Sharp S., 2021, Flyway‐scale analysis reveals that the timing of migration in wading birds is becoming later, Ecology and Evolution, 11(20): 14135-14145. https://doi.org/10.1002/ece3.8130 PMid:34707846 PMCid:PMC8525091 Mouritsen H., 2018, Long-distance navigation and magnetoreception in migratory animals, Nature, 558(7708): 50-59. https://doi.org/10.1038/s41586-018-0176-1 PMid:29875486 Mueller J., Pulido F., and Kempenaers B., 2011, Identification of a gene associated with avian migratory behaviour, Proceedings of the Royal Society B: Biological Sciences, 278(1719): 2848-2856. https://doi.org/10.1098/rspb.2010.2567 PMid:21325325 PMCid:PMC3145181 Padget O., Bond S., Kavelaars M., Loon E., Bolton M., Fayet A., Syposz M., Roberts S., and Guilford T., 2018, In situ clock shift reveals that the sun compass contributes to orientation in a pelagic seabird, Current Biology, 28(2): 275-279, E2. https://doi.org/10.1016/j.cub.2017.11.062 PMid:29337074 Picardi S., Frederick P., Borkhataria R., and Basille M., 2020, Partial migration in a subtropical wading bird in the southeastern United States, Ecosphere, 11(2): e03054. https://doi.org/10.1101/626473 Putman N., Williams C., Gallagher E., and Dittman A., 2020, A sense of place: Pink salmon use a magnetic map for orientation, Journal of Experimental Biology, 223(4): jeb218735. https://doi.org/10.1242/jeb.218735 PMid:32029460 Ralston J., Lorenc L., Montes M., DeLuca W., Kirchman J., Woodworth B., Mackenzie S., Newman A., Cooke H., Freeman N., Sutton A., Tauzer L., and Norris D., 2019, Length polymorphisms at two candidate genes explain variation of migratory behaviors in blackpoll warblers (Setophaga striata), Ecology and Evolution, 9(15): 8840-8855. https://doi.org/10.1002/ece3.5436 PMid:31410284 PMCid:PMC6686290

RkJQdWJsaXNoZXIy MjQ4ODYzNA==